JENNY SCIEN(CEE 🔤 moving precisely, within tight space

Manual XENAX® Xvi 48V8

Edition 18. March 2024 Compact Ethernet Servo Controller

Parameterization over Web browser

The integrated webserver allows a setup and parameterization over web browser. After an automatic self-check, the connected LINAX[®] linear motor axis, the ELAX[®] electric slide or the ROTAX[®] rotary axis can instantly be set in motion by click on the Quick Start Button.

This XENAX[®] Xvi 48V8 is setting new standards in terms of intuitive handling.

General

E

The XENAX® Xvi 48V8 Ethernet servo controller controls all series of the LINAX® linear motor axes, the ELAX® electric slide product family and the ROTAX® rotary axis. It is also possible to control servo motors series RAxx (ultra-compact rotary axes) and RT-xx (round table with hollow shaft).

Customary rotary AC/DC/EC servo motors for example from FAULHABER® or MAXON® can also be operated by the XENAX® Xvi 48V8.

The logic supply (24V DC) and the intermediate circuit voltage (24V – 48V DC) are separately connectable. This is how "Safety Torque Off" is possible as a standard.

Master-Slave function and Force Calibration (compensation of the cogging forces in iron core linear motors) are further features of this compact XENAX® Xvi 48V8 servo controller.

> Alois Jenny Jenny Science AG

JENNY SCIENCE moving precisely, within tight space

Contents

1 Characteristics XENAX [®] Xvi 48V8	7
1.1 Electronics / Firmware	/
1.2 Performance / Options	/
1.3 Dimensions	8
2 Controllable Motor Types	9
2.1 Linear Motor Axes and Electric Slides	9
2.2 Servo Motors in our Product Line	9
2.3 Customary Servo Motors	10
3 Hardware and Installation	11
3.1 Environmental Conditions	11
3.2 Assembly and Installation	11
4 Electrical Connections	12
4.1 Plug Arrangement	12
4.2 Plug Pin Configuration	12
4.2.1 RS232	12
4.2.2 Motor Plug 3 Phase	13
4.2.3 Logic and Power Supply	13
4.2.4 Encoder and Hall Signals	14
4.2.5 Y-Cable for Encoder access	14
4.2.6 Definition of Rotating Direction for Servo Motors	14
4.2.7 OPTIO Pulse/Dir, Second Encoder Channel	15
4.2.8 PLC I/O	16
4.3 Internal I/O Circuit	17
4.4 Output Configuration	17
5 Configuration Motor Type Jenny Science / Motor customer specific	18
6 RS232 Serial Interface	19
6.1 Baud Rate RS232 XENAX [®]	19
7 ETHERNET TCP/IP Interface	19
7.1 Test IP Connection with >IPCONFIG	20
7.2 Test Connection with >PING	20
7.3 Close Port 10001	20
8 ASCII Protocol	21
8.1 ASCII Protocol TCP/IP	22
8.2 Asynchronous Messages (Events)	22
9 WebMotion®	23
9.1 Start WebMotion [®]	24
9.1.1 Error "Upload XENAX [®] Settings"	24
9.2 Quick Start (only with LINAX [®] and ELAX [®] linear motor axes)	25
9.3 Operation, Status Line	26
9.4 Move Axis by Click	27
9.4.1 Move Axis by Click for LINAX [®] /ELAX [®] Linear Motors	27

9.4.2 Move Axis by Click for ROTAX [®] Rotary Motor or Third Party Motors	29
9.5 Move Axis by Command Line	30
9.6 ASCII Command Set for XENAX [®]	30
9.6.1 Power / Reset	30
9.6.2 Basic Settings	31
9.6.3 Motor Settings	31
9.6.4 Controller Settings	31
9.6.5 Motion Settings	32
9.6.6 Reference LINAX [®] / ELAX [®]	33
9.6.7 Reference Gantry	33
9.6.8 Reference Rotary Motors	33
9.6.9 Move Commands	34
9.6.10 Index (programmed movements)	34
9.6.11 Program / Application	35
9.6.12 Force Control Forceteq [®] basic	35
9.6.13 Event	37
9.6.14 Input / Output	38
9.6.15 Correction Table	39
9.6.16 Limit Position ELAX®	40
9.6.17 System Information	41
9.6.18 Ethernet	42
9.6.19 Bus Module	42
9.6.20 DS402 Compatibility	42
9.6.21 Error Handling	43
9.6.22 System Monitoring	43
9.6.23 License	43
9.7 Move Axis by Forceteq [®]	44
9.8 Move Axis Motion Diagram	45
9.9 Index	47
9.10 Drive I_Force	48
9.11 Sector I_Force	48
9.12 Program	49
9.12.1 Program commands	50
9.13 I/O Functions	52
9.13.1 Selection of Input Functions	53
9.13.2 Selection Output Functions	55
9.13.3 Operation with Additional Holding Brake	55
9.14 Profile (Velocity)	56
9.15 Captured Pos	57
9.16 State Controller	58
9.16.1 F Setting	61
9.17 Motor	64
9.17.1 Motors LINAX [®] and FLAX [®]	64
	54

9.17.2 Motor ROTAX®	65
9.17.3 Third Party Motors	66
9.17.4 Position Overflow	67
9.18 Reference	68
9.18.1 Reference LINAX®	68
9.18.2 Reference ELAX®	68
9.18.3 Reference ROTAX [®] und Third Party Motors	70
9.18.4 Reference to Mechanical Stop	71
9.18.5 Correction Table for LINAX [®] / ELAX [®]	72
9.19 Basic Settings	75
9.20 Version	76
9.21 Update Firmware / License	77
9.21.1 Display the actual license code	78
9.21.2 Subsequent license ordering	78
9.21.3 License activation	78
9.22 Save	80
9.23 Open	80
10 Master / Slave	81
10.1 Master/Slave Configuration	81
10.2 Programming example Pick&Place	82
10.3 Timing Master / Slave	82
11 Gantry Synchronized Mode	83
11.1 Activate Gantry Mode	83
11.2 ASCII Commands for Gantry Synchronized Mode	84
11.3 HW Limit-Switch in Gantry-Setup	84
12 Forceteg [®] Force Measurement Technology	85
12.1 Forceteq [®] basic current based with self calibrated motor	85
12.2 Forceteq [®] basic via Realtime Bus	86
12.2.1 CANopen over Ethernet	86
12.2.2 Ethernet/IP	86
12.2.3 Profinet	86
12.3 Forceteq [®] basic via XENAX [®]	87
12.3.1 I_Force Calibration	87
12.3.2 I_Force Limitation	87
12.3.3 I_Force Monitoring	88
12.3.4 I_Force Control	89
12.3.5 Sector Offset for Touching Position	90
12.3.6 Application Example	91
13 Parameterization rotative third-party motor	95
13.1 Motorparameter with WebMotion	95
13.2 External load for state controller	97
13.3 Template parametersset for documentation	97
14 Operating Status on 7-Segment Display	98

15 Error Handling	
15.1 Error Codes	99
15.2 Notes for Error 50	103
15.3 Arbitrary Display on 7-Segment	104
15.3.1 Defective adapter for logic supply	104
15.3.2 Defective Firmware	105

1 Characteristics XENAX[®] Xvi 48V8

1.1 Electronics / Firmware

S C I E

N

Y

E.

J

Description	Data
Interfaces	Ethernet, TCP/IP, http web server
	Puls/direction, Master Encoder, I/O
	I ² C Master/Slave, Start-up Key
	RS232
Bus, multi-axis operation	EtherCAT (CoE), DS402
	Ethernet POWERLINK, DS402
	CANopen, DS 402
	PROFINET (PROFIdrive)
	EtherNet/IP, DS402
	Ethernet Switch, TCP/IP
Operation Modes	Standard Servo (MODE 0)
	Multi axis operation (Master/Slave, Gantry)
	Electronic gear (MODE 1) optional
	Pulse/Direction (MODE 2) optional
Status indication	7-Segment LED
Input digital	4 x 24V Pull down
Output digital	2 x 24V, 100mA Source or 400mA Sink
Input function	4 inputs to start a function or program
Output function	2 outputs to indicate a condition
Reference for rotary motors	free to define, incl. external sensor
Index	50 motion moves (accl. / speed / distance, position)
Profile	5 extended motion profiles with 7 profile segments each.
Number of application programs via input	4 program starts triggered by digital inputs.
Firmware update	Over TCP/IP, Flash-memory internal
Application and parameter update	Over TCP/IP, Flash-memory internal

1.2 Performance / Options

"LG" logic supply "PW" power supply motor 3- Phase Output frequency Nominal current Peak current Continuous power / dissipation loss Temperature monitoring output stage Excess voltage – observation Under voltage – observation Ballast circuit Fuse power Motor temperature observation with LINAX®, ELAX® and ROTAX®, sensor in coils PLC Input PLC Output 24VDC / max. 1.2 A 12-48VDC 0-599 Hz 0-8A 18A Typical 48V / 3A / 150W / $\eta \approx 85\%$ / Pv = 22W Shutdown at 80°C > 60V < 10V up to 80W 10AF Shutdown at 80°C

4 Inputs, 24V 2 Outputs, 24V, Source 300mA

Options EtherCAT (CoE) DS402, Beckhoff[®], OMRON[®], TRIO[®] MC POWERLINK (CoP) DS402, B&R® DS402 CANopen EtherNet/IP DS402, Allen-Bradley PROFINET (PROFIdrive) SIMATIC, SIMOTION, SINUMERIK ID number for Master Slave and application memory Start-up Key Force Processes Optional with license code. Controllable Motor-Types ELAX[®], ROTAX[®] and third party motors enabled by default. LINAX[®] optional with license code.

1.3 Dimensions

Dirt resistance	IP 20
Weight	Standard 720g, with bus module 760g
Case	Chrome steel
Ground plate	Chrome steel

2 Controllable Motor Types

2.1 Linear Motor Axes and Electric Slides

LINAX[®] Linear Motors

3 phase synchronous linear motor with encoder RS422 A/A*, B/B* und Z/Z* and distance-coded reference marks.

Special feature: Linear motor identification and temperature monitoring over I²C bus.

ELAX[®] Electric Slides with Linear Motor

ELAX[®] is the evolutionary step of the widespread pneumatic slides. The great accomplishment is the patented compact integration of the linear motor in the slider case, resulting in a force/volume ratio which has hitherto never been achieved.

> Special feature: Linear motor identification and temperature monitoring over I²C bus.

2.2 Servo Motors in our Product Line

ROTAX® Rotary motor axes

Whether you choose the ROTAX[®] Rxvp with direct connection options to ELAX[®] linear motor slides and LINAX[®] linear motor axes or you go for the ROTAX[®] Rxhq 50 with enormous torque despite its small dimensions and the 12 mm diameter hollow shaft – the compact ROTAX[®] rotary motor axes from Jenny Science all work precisely, can be used flexibly and are robust in application. The XENAX[®] servo controller identifies the ROTAX[®] rotary axis and configures the controller parameters automatically.

JENNY SCIEN (C

Lafert, RAxx, RTxx

AC-Servo motors with encoder A/A*, B/B* and Z/Z* and hall sensors e.g. AEG B28 D4 0,4Nm, 6000 U/min. Optionally available with brakes for vertical applications.

2.3 Customary Servo Motors

E

Faulhaber®, Maxon®

AC / DC / EC brushless servo motors with incremental encoder RS422 A/A*, B/B* and Z/Z* and hall sensors, as well as DC brush-type servo motors with incremental encoder.

For brushless AC/EC servo motors there are hall signals and incremental encoder necessary.

3 Hardware and Installation

3.1 Environmental Conditions

Storage and transport	No outdoor storage. Warehouses have to be well ventilated and dry. Temperature from -25°C up to +55°C
Temperature while operating	5°C -50°C environment,
	(above 40°C, nominal current reduced to 6A)
Humidity while operating	10-90% non-condensing
Air conditioning	No external air conditioning needed; integrated heat
	sink.
MTBF	> 120'000h for housing internal temperature of < 50°C

E

3.2 Assembly and Installation

Assembly with two screws on an electrically conductive rear wall e.g. the back wall of a switch cabinet.

For a series mounting the distance between the devices has to be at least 10mm and the distance to the floor has to be at least 40mm.

We recommend mounting the devices in vertical orientation with the 7-segment display at the top to ensure a good cooling air circulation.

It is recommended to install the XENAX[®] servo controller in a control cabinet and to connect the motor cable to the protective earth using the EMC shield clamp (Art. No. 130.09.00).

4 Electrical Connections

Note:

To disconnect or connect the electrical components at the electrical connectors, the power supply must be disconnected.

XENAX[®] Xvi 48V8

4.1 Plug Arrangement

Description

Plug Type

RS232 Real time Ethernet (optional) CANopen (optional) Ethernet TCP/IP MOTOR POWER / LOGIK ENCODER HALL PLC I/O START-UP / MASTER-SLAVE USB-B socket 2 x RJ45 socket with status LED 9 Pol socket D-Sub RJ45 socket with status LED 3 pole plug Wago, pitch 3,5mm 4 pole plug Wago, pitch 3,5mm 15 pole plug D-Sub High Density 26 pole plug D-Sub High Density 2 x 4 pole plug USB-A

4.2 Plug Pin Configuration

4.2.1 RS232

The serial interface RS232 is led over a 4 pole USB-B socket.

USB Socket	XENAX®	PC/SPS
1	N.C.	
2	RX —	— тх
3	тх —	— RX
4	GND —	— GND

4.2.2 Motor Plug 3 Phase

Wago 3 Pole Plug	LINAX [®] / ELAX [®] 3 Phase	Servo motor 3 Phase	DC Motor
1	U (white)	U	DC +
2	V (brown)	V	DC -
3	W (green)	W	

4.2.3 Logic and Power Supply

1			
4 Pole Fe	emale Wago 734-104		
for cross-	section up to 1.5mm ²		
1	0, GND	Adaptar lagia	
2	24V DC	Auapter logic	
3	0, GND	Adaptar pawar	
4	12-48V DC	Adapter power	

The typical POWER supply is 24V DC. For the stronger LINAX[®] F40 / F60 axes with high masses (>2kg) or high dynamics (>1.5m/s) a POWER supply of 48V is applicable. The current consumption per axis can be up to 8A and 18A peak per axis. Depending on mass in motion, profile and power supply voltage.

For a fuse protection of the power supply, it must be considered that a short peak current of 8A can be reached for the rotating field adjustment.

For a detailed calculation of the required power supply in your application, please contact our support <u>www.jennyscience.ch/en/Service</u>.

Important:

- The **0** volt connection of the logic supply (pin 1) and the 0 volt connection of the power supply (pin 3) have to be connected to the ground/chassis star point of the switch cabinet.
- The **base plate** of the Lxs/Lxu motors must be connected to the GND/chassis star point of the switch cabinet.
- The XENAX[®] servo controller must be screwed onto a conductive background, which is connected to the GND/chassis star point of the switch cabinet. The motor cable must be connected to the shield clamp.

Note:

If the Lxs/Lxu is mounted on a non-conductive base plate (e.g. granite), the protective earth must be connected directly to the motor.

In case of emission sensitivity, it is recommended to twist the supply cable for logic and power.

JENNY SCIEN()

4.	2.4	Encoder	and	Hall	Signals
----	-----	---------	-----	------	---------

Ē

15 pole D-Sub socket	Signal	Description
1	GND	Together, for encoder and hall OV supply, only 1 pin
2	5V Encoder	150 mA for encoder supply
3	Encoder A	Pull up 2,7k Ω to 5V, differential input 26LS32
4	Encoder A*	Middle level: pull up 2,7k Ω to 5V, Pull down 2,2k Ω ,
		differential input 26LS32, 330 Ω internal between Pin3/4
5	Encoder B	Pull up 2,7k Ω to 5V, differential input 26LS32
6	Encoder B*	Middle level: pull up 2,7k Ω to 5V, pull down 2,2k Ω ,
		differential input 26LS32, 330 Ω internal between Pin5/6
7	Encoder Z	Pull up 2,7k Ω to 5V, differential input 26LS32
8	Encoder Z*	Middle level: pull up 2,7k Ω to 5V, pull down 2,2k Ω ,
		differential input 26LS32, 330 Ω E internal between Pin7/8
9	HALL 1	Pull up 2,7k Ω to 5V, differential input 26LS32
10	HALL 1*	Middle level: Pull up 2,7k Ω to 5V, pull down 2,2k Ω ,
		differential input 26LS32
11	HALL 2 / -TMP	Pull up 2,7k Ω to 5V, differential input 26LS32 / over
		temperature signal motor
12	HALL 2*	Middle level: Pull up 2,7k Ω to 5V, Pull down 2,2k Ω , differential
		input 26LS32
13	HALL 3 / I2C_SCL	Pull up 2,7k Ω auf 5V, differential input 26LS32 / I2C clock signal
14	HALL 3*	Middle level: Pull up 2,7k Ω to 5V, pull down 2,2k Ω , differential
		input 26LS32
15	5V Hall / I2C_SDA	5V, 150 mA / I2C data signal

4.2.5 Y-Cable for Encoder access

By using a pre-assembled Y-cable to access the differentially routed A, B and Z signals, cameras, for example, can be triggered precisely. The cable is available from Jenny Science AG. The signal is to be analysed in quadrature.

9 pole D-Sub socket	Signal	Description
1	GND	Together, for encoder and hall OV supply, only 1 pin
2	NC	Not connected
3	А	Output Encoder A
4	A*	Output Encoder A*
5	В	Output Encoder B
6	B*	Output Encoder B*
7	Z	Output Encoder Z
8	Z*	Output Encoder Z*
9	NC	Not connected

4.2.6 Definition of Rotating Direction for Servo Motors

	Sight on front surface motor shaft, turn the shaft clockwise, the meter has to count upwards
Switch encoder A/B Switch +/- motor power	Switch rotating direction for DC brush type servo motors
Switch encoder A/B Switch hall1 with hall3 Switch winding-phase 1 and phase 2	Switch rotating direction for 3phase brushless servo motors
Phase 1 to phase 2, 2 to 3 and 3 to 1 Hall 1 to hall2, 2 to 3 and 3 to 1	Switch phase connection for brushless servo motors without change of rotating direction

4.2.7 OPTIO Pulse/Dir, Second Encoder Channel

The pulse/Dir and second encoder channel are deactivated by default. Both options can be ordered.

MODE	0-29	2
INC PER PULSE	1-50	5
SYNC RATIO	+-xx:10	

E

PULSE/DIRECTION CONTROL Enter settings in menu setup / basic settings: PULSE / DIRECTION CONTROL, MODE 2, optional Parameter MODE and INC PER PULSE

Signal	D-SUB	PLC Cable	Socket PLC I/O / Analog
GND internal Pull up 2,7kΩ to 5V, differential input 26LS32 Pull up 2,7kΩ to 5V, differential input 26LS32	Pin 7 Pin 15 Pin 13	blue white-yellow white-green	GND PULS DIRECTION
Middle level: Pull up 2,7k Ω to 5V, pull down 2.2k Ω , differential input 26LS32	Pin 12	red-blue	DIRECTION*
Middle level: Pull up 2,7kΩ to 5V, pull down 2.2kΩ, differential input 26LS32	Pin 14	brown-green	PULS*

MODE	0-29	1
INC PER PULSE	1-50	0
SYNC RATIO	+-xx:10	-5
	0-255	

ENCODER 2 Electronic gear, MODE 1, optional Parameter SYNCH RATIO 10 = 1:1

Signal	D-Sub	PLC Cable	Socket PLC I/O / Analog
GND intern	Pin 7	blue	GND
5V intern	Pin 8	red	5V (Power encoder)
Pull up 2,7kΩ to 5V, differential input 26LS32	Pin 15	white-yellow	Α
Pull up 2,7k Ω to 5V, differential input 26LS32	Pin 13	white-green	В
Middle level: Pull up 2,7kΩ to 5V, pull down 2.2kΩ, differential input 26LS32	Pin 12	red-blue	B*
Middle level: Pull up 2,7kΩ to 5V, pull down 2.2kΩ, differential input 26LS32	Pin 14	brown-green	A*

PLC I/O

Input 1

Input 2

Input 3

Output 1 (0/24V)

Output 2 (0/24V)

Enable PWR / Input

4.2.8 PLC I/O

PLC Cable

white

brown

green

yellow

grey

black

D-Sub

Pin 1

Pin 2

Pin 3

Pin 4

Pin 5

Pin 9

A pre-assembled shielded cable with free end according to this pin assignment is available from Jenny Science AG.

Signal

Output Source PNP: 24V/100mA, Sink NPN: open collect. 24V/400mA Source PNP: 24V/100mA, Sink NPN: open collect. 24V/400mA

	Input
24V Input,	Ri 31k Ω

Enabling Power Stage

Activate the function with DIP-switch

Pin 6	pink	Input 4	
	TI 🗄 mm		
ON –		<u></u>	
OFF -		1000000000	

DIP switch OFF	HW power stage enabling with 24V on Pin 9 Input open or 0V = power stage blocked

DIP switch ON Always enabling power stage, Pin 9 inactive (Standard configuration)

Power Output

2A 24V / 200mA

Pin 10	violet	GND	
Pin 11	red-blue	+ 24V Output	

4.3 Internal I/O Circuit

INPUT 1-4

Ē

HIGH or LOW ACTIVITY programmable

OUTPUT 1-2

TYPE SOURCE

SOT Bit-value	ТҮРЕ	SOA Bit-value	ACTIVITY	Output ON	Output OFF
0,1	SOURCE	1	HIGH	24V*	open*
		0	LOW	open	24V

4.4 Output Configuration

COMMAND	
SOA3	
recall command	V
RESPONSE	
SOA? 3 >	

ACTIVITY

SOA (Set Output Activity) parameter 2 Bit 1 Bit-value per output

Output	2	1
SOA Bit	1	0
Bit-Wert	1	1
Decimal	3	

*Default setting all outputs set to HIGH ACTIVE >SOA 3

5 Configuration Motor Type Jenny Science / Motor customer specific

The XENAX[®] Servo Controller differentiates between Jenny Science Motors LINAX[®] Lx, ELAX[®] Ex or ROTAX[®] Rx, and linear motors from other manufacturers. The setting is done on the hardware over a DIP switch. The configuration is visible on the sticker with the serial number. The Jenny Science motors are automatically identified and parameterized.

> XENAX® Xvi 48V8 EtherCAT, JSc Motor SN Xvi-48V8.xxxx.xxxx JENNY SCIENCE AG

XENAX[®] Xvi 48V8 EtherCAT, Third-party SN Xvi-48V8.xxxx.xxx JENNY SCIENCE AG

Jenny Science Motors: LINAX[®] Linear Motor Axis ELAX[®] Linear Motor Slide ROTAX[®] Rotary Axis

Motors from other manufacturers Typically rotary servo motors

Motor Type	Bit 1	Bit 2	Bit 3	Bit 4
JSc Motor	ON	ON	OFF	OFF
Third-party	OFF	OFF	ON	ON

A subsequent readjustment of motor type is possible through the according setup of the DIP-switch. A change in motor type should be updated on the sticker with the serial number.

6 RS232 Serial Interface

6.1 Baud Rate RS232 XENAX®

The RS232 operates with the following parameters:

Baudrate	115'200 Baud
Data	8 Bit
Parity	kein
Stop	1 Bit

7 ETHERNET TCP/IP Interface

The TCP/IP interface has two essential functions. Firstly, HTML5-WebMotion can be accessed over the Ethernet TCP/IP interface. Secondly, the Ethernet TCP/IP interface is used to control the axis with all available ASCII commands. The port 10001 is used for ASCII commands.

IP-address of XENAX[®] is provided on the back side of the controller. If this has been changed or the label is not accessible, you can have the IP-address displayed on the 7-segmet display. To do this, switch on the logic supply and switch it off again while the dot in the 7-segment display lights up. The next time you switch it on, the IP-address is shown on the 7segment display.

Connection of XENAX[®] to laptop/PC over a normal RJ45 network cable.

When connecting laptop/PC directly without a switch to XENAX[®], it may need a crossed RJ45 cable. However, with newer network types a crossed RJ45 cable is not necessary anymore.

Ethernet connector

The green "Link Status" LED lights up as soon as the cable is connected and the initialization of the connection is complete. Die orange «Activity» LED blinkt bei Kommunikation.

7.1 Test IP Connection with >IPCONFIG

Verbindungsspezifisches DNS-Suffix: IP-Admesse (Autokonfig.)...: 192.168.2.200 Subnetzmaske...: 255.255.255.0 Standardgateway....

IPCONFIG command in DOS window

Test TCP/IP address range. IP address has to be in range of 192.168.2.xxx If necessary adjust IP address in computer "network environment" to e.g. IP 192.168.2.200. xxx = 001 – 255 ≠ IP Address XENAX®

7.2 Test Connection with >PING

C:\Dokumente und Einstellungen\ping 192.168.2.100
Ping wird ausgeführt für 192.168.2.100 mit 32 Bytes Daten:
Antwort von 192.168.2.100: Bytes=32 Zeit≺1ms ITL=64 Antwort von 192.168.2.100: Bytes=32 Zeit≺1ms ITL=64 Antwort von 192.168.2.100: Bytes=32 Zeit≺1ms ITL=64 Antwort von 192.168.2.100: Bytes=32 Zeit≺1ms ITL=64
Ping-Statistik für 192.168.2.100: Pakete: Gesendet = 4. Empfangen = 4. Verloren = 0 (0% Verlu Ca. Zeitangaben in Millisek.: Minimum = 0ms, Maximum = 0ms, Mittelvert = 0ms

PING command in DOS window

IP address is provided on the back side of XENAX[®]. If no response, check direct connection with crossed RJ45 cable.

7.3 Close Port 10001

PuTTY Fa	atal Error	×
8	Network error: Connection refused	
	ОК	

If the port 10001 is not closed correctly it can stay open. In this case, it is no longer possible to connect to this port with a new TCP/IP connection

There are 3 options for closing the port again.

1. Disconnect the Ethernet cable directly on the Xenax and the port will be closed automatically.

 Open a second TCP/IP connection over the port 9999 and send a «ENPR» command. This will close the port 10001.

 Set a timeout with the command "WD" and specify the watch dog time in milliseconds. A
<CR> must now be sent over port 10001 with the defined interval or the port will be closed automatically.

8 ASCII Protocol

Over Ethernet TCP/IP in the menu *move axis / by command line* in WebMotion[®] or via the serial interface e.g. with hyper terminal.

The simple ASCII protocol works with the echo principle.

The sent characters come back as an echo and can be checked immediately.

Thus, if existing, you get a parameter value and finally the character prompt ">". If the command could not be

accepted then, it has a "?" character in the string.

Description	Command	[Parameter]
Write p	arameters:	
Power continues	PWC	<cr></cr>
Speed	SP	10-9'000'000 <cr></cr>
Acceleration	AC	2'000-100'000'000 <cr></cr>
Terminate a comr	nand with <c< td=""><td>R> only, no additional <lf>.</lf></td></c<>	R> only, no additional <lf>.</lf>

Read parameters:		
Tell Position	ТР	<cr></cr>
Retrieve	e.g. AC?	<cr></cr>
	SP?	<cr></cr>

TP <CR> <LF> XXXXXXX<CR> <LF> > AC? <CR> <LF> XXX <CR> <LF> > SP? <CR> <LF> XXX <CR> <LF> >

Echo command accepted

PWC <CR> <LF> >

SPxxxxxx<CR> <LF> > ACxxxxxx<CR> <LF> >

Echo command not recognized or cannot be completed in the current configuration <command> <CR> <LF> ? <CR> <LF> >

Echo command cannot be accepted at this time <command> <CR> <LF> #xx <CR> <LF> >

#-List

Nr.	Description
#01	Error in queue
#03	Drive is active
#05	Program is active
#13	EE1 in queue
#14	EE in queue
#15	Force Calibration active
#27	I Force Drift Compensation active
#34	Rotary reference active
#36	Gantry reference active
#38	Reference active
#40	Command at active bus module not allowed
#47	Fault Reaction active (f.e. stop ramp)
#49	No JSC Motor detected
#65	Value of parameter not valid
#66	Command not completed correctly (>5s
	between ASCII-signs)

Note for sequential commands:

Terminate a command with <CR> only, no additional <LF>. Do not send a new command until you have received the prompt character ">" before.

TMC2300

	8.1 ASCII Protocol TCP/IP

Socket receive	Buffer	ASCII Answer
TP4500 CR LF > TM	тм	TP4500

In TCP/IP the cohesive ASCII sequences can be splitted into different telegram packages. This is why a separate receive buffer has to be considered.

8.2 Asynchronous Messages (Events)

C2300 CR LF >

To reduce response time, status or PLC input modifications of the PLC interface can be sent automatically (events). Therefore it is not necessary to poll the status or inputs permanently.

Enable Events

Events disabled, default	EVT0
Events enabled generally	EVT1

Status modifications / Reference Event

Will be sent in case of generally activated events.

Power OFF	@S0
Power ON / Halt	@S1
In Motion	@S2
Error	@S9
Reference finished	@H

PLC Input

In addition to the status modifications, changes of the PLC inputs can also trigger events. Prerequisite for this is that Events is activated (EVT1) and ETI (Event Track Input) is selected.

Inputs are selectable with ETI (Event Track Input)

Enable event of input 14	ETI14
Enable all input events	ETIO

Disable event of PLC input with DTI (Disable Track Input).

Disable event for input 14	DT14
Disable all input events	DTI0

PLC I/O pin no.		6	5	4	3
INPUT no.		4	3	2	1
Example input bits after modification		1	0	1	1
Event general	@I			x	
Example Event	۵۱		"	Β″	

Structure of input events @100x with x as half bytes in Hexadecimal notation and shows the physical state of the inputs.

Default Settings after Power ON

After power on of XENAX[®] servo controller or application download, default settings are active again:

Events OFF PLC Input Events OFF

9 WebMotion®

WebMotion[®] is an integrated graphic user interface (website), located in XENAX[®]. It is loaded and activated over a web browser (Internet Explorer >= 8.0, Chrome, Firefox, Opera, ...).

Note:

Please make sure that zoom-settings of the browser window are at 100% (original size). Otherwise, the WebMotion[®] display is affected.

Start your web browser with the IP address number of your XENAX[®] and add "/xenax.html" as a suffix.

IP address is provided on the back side of the XENAX[®].

Example: http://192.168.2.xxx/xenax.html

XENAX[®] is being started with an automatic system selfcheck including type designation and version information on firmware and hardware. Moreover, WebMotion[®] identifies the connected linear motor or rotary motor and uploads the current XENAX[®] settings (parameters, programs) in to the WebMotion[®].

Interruption of TCP/IP Connection

If the XENAX[®] logic supply is interrupted or if the Ethernet cable is disconnected, the TCP/IP interruption will be detected by WebMotion[®] and signaled with "offline". After removing the cause of the offline-mode, the TCP/IP connection has to be reloaded by updating the current web browser window.

If it is still blocked, it is recommended to first exit and then restarts the web browser.

9.1.1 Error "Upload XENAX[®] Settings"

The settings in Kaspersky Internet Security might be responsible if the error code "Error Upload XENAX Settings" occurs with the automatic self-check of WebMotion[®].

If you are using Kaspersky or similar internet security software, the security for Instant Messenger Services has to be deactivated.

(Refer example in Kaspersky Pure 3.0)

9.2 Quick Start (only with LINAX® and ELAX® linear

motor axes)

The Quick Start function allows the user to setup the LINAX[®] or ELAX[®] linear motor axis with the XENAX[®] controller simply immediately after receipt of the components.

It is completed per mouse click, without parameter settings and without an instruction manual. By pressing the Quick Start button, a system check is automatically started including the following tests: Cable connections, power voltage, input functions, functionality of the measuring system, parameter settings and current flow of the linear motor.

In order to test the functionality of the measuring systems the system asks you to move the slider of the LINAX[®] linear motor axis of a distance of at least 20mm back and forth.

With the START the LINAX® or ELAX® linear motor will be referenced automatically and will then move the distance back and forth that was indicated manually by hand before.

For the Quick Start Function it is recommended to operate the linear motor axis in horizontal orientation without a payload.

The dynamics can dynamics be adjusted with the slider "DYNAMIC".

9.3 Operation, Status Line

The status line on the lower edge of WebMotion[®] gives an overview of the current condition of XENAX[®] and the connected motor at any time. These data cannot be changed and are for the user's information only.

MOTOR TMP

Shows the current temperature of the coils in the LINAX[®] / ELAX[®] / ROTAX[®] motors, which is detected by a sensor. This measuring function is not possible for rotary servo motors. The temperature observation for servo motors is done by an I²T calculation. For linear motors the I²T observation is performed in addition to the motor temperature measurement.

POSITION

After referencing, this indicates the absolute position of the motor in increments of the measuring system. Standard for LINAX[®]/ ELAX[®] linear motors is 1Increment = 1µm.

MOTOR

Automatic identification of the connected LINAX[®]/ ELAX[®] / ROTAX[®] motor axis. If a third-party rotary motor is connected, "ROTATIVE" is displayed.

REFERENCE

The reference is a condition to start the LINAX®/ELAX® linear motor axes. This is also how the precise current commutation is being calculated. PENDING = Reference outstanding DONE = Reference completed

MODE

Displays the operating mode: 0=Standard Servo 1 = El. Gera mechanism over second encoder 2 = Pulse/Dir, stepper emulation

STATUS

POWER OFF = off POWER ON / HALT = On, Motor is not moving IN MOTION = Motor is in motion ERROR XX = error number, with a button that details the error and shows error history.

INPUT

ERROR

Condition of the direct inputs 1-4.

OUTPUT

Condition of outputs 1-2 (Modification under menu *application / I/O*)

9.4 Move Axis by Click

9.4.1 Move Axis by Click for LINAX $^{\ensuremath{\$}}/\ensuremath{\mathsf{ELAX}}^{\ensuremath{\$}}$ Linear Motors

Simple online control for setup and test of the linear motor axes.

The orange values behind the empty fields show the current registered values in XENAX[®]. New values can be entered in the empty fields and registered with <Enter>. These parameters will overwrite the existing values and will be registered directly in the XENAX[®] servo controller.

SOFT LIMIT POS

Software Limit Position, setting of an individual motion range in increments. SLP- = position counter lower values SLP+ = position counter upper values Both values 0 = No limit (limit is the stroke of the connected linear motor)

S-CURVE %

Percentage S-curve rounding of the internal motion profile, e.g. in an INDEX, generally for all motion profiles. Automatic calculation of jerk (changing of acceleration per time unit inc/ s³)

ACC *1'000

Acceleration in inc/s² multiplied with a factor of 1'000

SPEED

Speed in Inc/s

SP OVERRIDE %

Override of the set speed and acceleration of a motion profile, for example for process deceleration or set up mode.

Go Way (REL)

Input of the distance relative to the present position in increments. Sta rt with <Enter>.

Go Position (ABS)

Input of the position absolute to the zero point in increments. Start with <Enter>.

Rep Reverse

Endless automatic motion back and forth. Input of the way relative to the present position in increments. Start with <Enter>. While running, the motors parameters such as acceleration, speed, and wait time can be adjusted online. Stop the back and forth movement with "Stop Motion".

Wait Reverse

Wait time at reversal point of rep reverse in units of 1 milliseconds. Start with <Enter>.

TIME (ms)

Time of the last profile drive in milliseconds.

Reference

Reference-drive (>REF) Executes the reference-drive to calculate the absolute position. Run this function once after switching on the power.

Go Pos O

(>G0) Go to position 0.

Power Cont

Power continues (>PWC)

Turning on the power stage with taking over the most recent absolute position and **without the need of referencing the linear motor, e.g. after error 50 or after "Power Quit".** This is only possible as long as the logic supply has not been interrupted after the linear motor was referenced.

Stop Motion

Stops the motion under control of deceleration ramp.

Power Quit

Power stage without power, the linear motor is movable by hand. Acknowledge error.

9.4.2 Move Axis by Click for ROTAX[®] Rotary Motor or Third Party Motors

	OK WebMotion communication online OK Firmware Version 5.04 (HW:1.00) OK ROTAX Rxhq50-12T0.3 OK Upload XENAX settings
	OK WebMotion communication online OK Firmware Version 5.04 (HW:1.00) OK THIRD PARTY OK Upload XENAX settings
Nove and Yorks Nove and Yorks	0.0° 0.0° 0.0° 0

The XENAX[®] Servo Controller automatically recognizes the ROTAX[®] rotary motor.

If the XENAX[®] servo controller does not recognize a LINAX[®] or ELAX[®] linear motor axis or a ROTAX[®] rotary axis, XENAX[®] assumes a connection with third party motor. Instead of "Go Pos 0" WebMotion[®] offers Jog + und Jog – functions.

Jog -

Runs the motor in negative direction until the command "Stop Motion" stops the motor.

Jog +

Runs the motor in positive direction until the command "Stop Motion" stops the motor.

While the motor is running with Jog, the dynamics SP OVERRIDE or SPEED can be adjusted online.

With the title the second of the second o

9.5 Move Axis by Command Line

The XENAX[®] can directly be controlled by a ASCII command set.

COMMAND

E

Transmits an ASCII command with <Enter>. Under "Recall commands" the activated commands are saved and can be reactivated by mouse click

RESPONSE

shows received characters by WebMotion[®].

COMMAND SET

Lists all ASCII commands, recognized by XENAX®.

9.6 ASCII Command Set for XENAX®

Using the simple ASCII command [+PARAMETER] set, all XENAX[®] Servo controller functions can be activated with an extremely short reaction time.

Information about the tables: ¹) Diagnosis and test functions ? Query of the programmed value

9.6.1 Power / Reset

DESCRIPTION	Short	CMD	PARAMETER
Power ON incl. reset encoder counter	Power	PW	
Power ON continue, keep encoder counter	Power continue	PWC	
Power OFF servo amplifier	Power quit	PQ	
Reset setup parameters to default values	Reset	RES	
Reset motor parameters to default values for the currently connected motor (other parameters remain unchanged)	Reset Motor	RESM	
Clear actual position counter, (not possible with LINAX [®] / ELAX [®] , with ROTAX [®] only possible if it is not referenced)	Clear position to 0	CLPO	

JENNY SCIEN

9.6.2 Basic Settings

Ε

DESCRIPTION	Short	CMD	PARAMETER
Set up of MODE (Operating) Important! In case of changing this value, the servo amplifier must be in state POWER OFF (>PQ)	Mode	MD	0, 1, 2 / ?
Inc. per pulse, pulse/direction control	Inc per Pulse	ICP	0-50
Synchronous ratio for electronic gear	Synchronous Ratio	SR	± 1-1'000 : 10
Set CI (query), CANopen Node ID, Powerlink Node ID, Remote ID in Master/Slave Configuration	Card Identifier	CI	0-255/?
Card Identifier of Gantry Slave	Gantry Slave Identifier	GSID	1-3
Identification string max 32 characters free for user	Servo controller ident.	SID	string / ?

9.6.3 Motor Settings

DESCRIPTION	Short	CMD	PARAMETER
Max. motor current nominal [x10mA]	l stop	IS	10-1'800 / ?
Max. motor current peak [x10mA]	l run	IR	10-1'800 / ?
Pole-pair number of motor	Pole pair	POL	0-100/?
Number of encoder increments per revolution	Encoder	ENC	10-10'000'000 / ?
Direction of phase control (u,v,w or v,u,w)	Phase Direction	PHD	0,1/?
Detection of phase control sequence. By rotating the motor clockwise, 0 or 1 appears. Parameter can be used to enter the phase control (PHD). If "?" appears, the Dip-switch is set to linear in the XENAX [®] servo controller or the hall wiring is wrong.	Phase Direction Detection	PHDD	?
Correction of the electrical angle at new adjustment of coils to magnets.	Phase Offset	рно	0-359/?
Force constant of the motor for LINAX [®] /ELAX [®] in [mN/A], torque constant for rotary motors in [μNm/A]	Force Constant Motor	FCM	0-100'000'000 / ?
Resistance phase to phase of the motor in $[m\Omega]$	Phase to Phase Resistance	RPH	0-100'000 / ?
Inductance phase to phase of the motor in [μ H]	Phase to Phase Inductance	LPH	0-100'000 / ?
Gear ration of rotary Jenny Science motors (ROTAX)	Gear Ratio	GR	?

9.6.4 Controller Settings

DESCRIPTION	Short	CMD	PARAMETER	
Payload "PAYLOAD" [g] or moment of inertia "INERTIA" [x10 ⁻⁹ kgm ²]	Mass Load	ML	0-100'000'000 / ?	
Bandwidth position controller "GAIN POS"	Bandwidth Position	BWP	1-5'000 / ?	
Bandwidth current controller "GAIN CUR"	Bandwidth Current	BWC	5-5'000 / ?	
Notch-Current filter frequency "Avoid Vibration FREQ NOTCH"	Filter Frequency Current	FFC	0-, 160-2'000 / ?	
Notch-Current filter quality factor	Filter Quality Current	FQC	500–100'000 / ?	
Active-Current filter frequency "Avoid Vibration FREQ ACTIVE"	Avoid Vibration Frequenc	y AVF	0-, 200-2'000 / ?	

JENNY SCIEN CE moving precisely, within tight space

	\bigcirc		
Damping coefficient settings in % of Active-Current filter	Avoid Vibration Damping	AVD	1-50/?
Max. position deviation in increments "Deviation POS ACT"	Deviation Position	DP	1-1'000'000/?
Permissible target point deviation "Deviation TARGET"	Deviation Target Pos.	DTP	1-10'000 / ?
Dwell time [ms] in the "Deviation Target Pos" window for the PSR Bit "IN POSITION" and statusword Bit "Target Position Reached".	Position Window Time	PWT	0-1000 / ?
Speed filter frequency	Filter Frequency Speed	FFS	0-, 160-2'000 / ?
Speed filter quality factor	Filter Quality Speed	FQS	500-100'000 / ?
Restore controller settings to behaviour smaller or equal to firmware V4.04D	Enhanced Bandwidth Mode Disable	EBMD	0-1/?
Controller Stability Settings "STAB – DYN"	Pole Placement Stability Dynamic	PPSD	± 50 / ?
Damping coefficient settings in % for swing out time reduction	Swing Out Reduction Damping	SORD	0-50/?
Frequency settings in 0.1Hz (21 => 2.1Hz)	Swing Out Reduction	SORF	0-, 20-1000 / ?

for swing out time reduction

9.6.5 Motion Settings

Frequency

DESCRIPTION	Short	CMD	PARAMETER
Position rated absolute, Inc	Position	РО	± 2'000'000'000 / ?
Position soll (absolute) increment, initial value after powerup	Position Initial Value	POI	± 2'000'000'000 / ?
Way relative, encoder increment	Way	WA	± 2'000'000'000 / ?
Way (relative) encoder Inkrement, initial value after powerup	Way Initial Value	WAI	± 2'000'000'000 / ?
Speed Inc/s (encoder counter)	Speed	SP	10-9'000'000 / ?
Speed Inc/s (encoder counter) , initial value after powerup	Speed Initial Value	SPI	10-9'000'000 / ?
Acceleration Inc/s ² (encoder counter)	Acceleration	AC	2'000-1'000'000'000 / ?
Acceleration Inc/s ² (encoder counter), initial value after powerup	Acceleration Initial Value	ACI	2'000-1'000'000'000 / ?
Emergency Deceleration Inc/ s ² (e.g. for input function EE/EE, for errors, if driving in limit switch or soft limit etc.) If necessary the emergency deceleration can be adjusted during operation if there is an emergency deceleration of >1s → In case of emergency the deceleration is always <1s	Emergency Deceleration	ED	10'000-1'000'000'000 / ?
Override, scaling from the Acceleration and Speed	Override	OVRD	1-100 / ?
Override, scaling from the Acceleration and Speed, initial value after powerup	Override Initial Value	OVRDI	1-100 / ?
Percentage S-Curve rounding. Calculation of jerk parameter automatically.	S-Curve	SCRV	1-100 / ?
Percentage S-Curve rounding. Calculation of jerk parameter automatically, initial value after powerup.	S-Curve Initial Value	SCRVI	1-100 / ?
Jerk of trajectory [x1000Inc/s ³] of the completed drive	Acceleration Variation (Jerk), Read only	ACV	?
Movement range limitation within soft limit negative	Soft Limit Position Negative	SLPN (Old: LL)	Linear: 0 - <stroke> / ? Rotativ: 2⁻³¹ - 2³¹ / ?</stroke>
Movement range limitation within soft limit positive	Soft Limit Position Positive	SLPP (old: LR)	Linear: 0 - <stroke> / ? Rotativ: 2⁻³¹ - 2³¹ / ?</stroke>

9.6.6 Reference LINAX® / ELAX®

DESCRIPTION	Short	CMD	PARAMETER
Home linear motor axis encoder	Reference	REF	
Start direction REF function 0 = positive, 1 = negative 2 = Gantry REF positive, motors same direction 3 = Gantry REF negative, motors same direction 4 = Gantry REF positive, motors reverse direction 5 = Gantry REF negative, motors reverse direction	Direction REF	DRHR	0-5 / ?

9.6.7 Reference Gantry

DESCRIPTION	Short	CMD	PARAMETER
Card Identifier of Gantry Slave set in the Master Control Set CI (query), CANopen Node ID, Powerlink Node ID, Remote	Gantry Slave Identifier Card Identifier	GSID CI	1-3 / ? 0-255 / ?
Home linear motor axis encoder	Reference	REF	
Start direction REF function 0 = positive, 1 = negative 2 = Gantry REF positive, motors same direction 3 = Gantry REF negative, motors same direction 4 = Gantry REF positive, motors reverse direction 5 = Gantry REF negative, motors reverse direction	Direction REF	DRHR	0-5 / ?
Gantry Master Slave offset selection 0 = Use automatically determined value (DGMSO) 1 = User defined value (PGMSO)	Enable Gantry Master/Slave Offset	EGMSO	0-1/?
Responds the automatically detected Gantry Master Salve Offset. This value is used when EGMSO = 0	Detected Gantry Master Slave Offset	DGMSO	?
Value of the gantry master slave offset if EGMSO = 1. This value can be used to correct the rectangularity of the gantry setup. Changes are corrected directly in the slave and the rectangularity can thus be checked with a dial gauge.	Preset Gantry Master Slave Offset	PGMSO	± 2'000'000'000 / ?

9.6.8 Reference Rotary Motors

DESCRIPTION	Short	CMD	PARAMETER
Home function according to program	Reference	REF	
Direction of motor rotation to seek external coarse sensor, 1 = CW, 2 = CCW	Dir Home	DRH	1-2 / ?
Speed [inc/s] for seeking external sensor If there is no external sensor, then set SPH = 0	Speed Home	SPH	0-250'000 / ?
Input number for external Home Sensor 0 = None, 1-4 = Input Number	Input Home	INH	0-4 / ?
Rotary direction of motor for seeking z-mark on encoder, 1 = CW, 2 = CCW 3 = shortest way (for ROTAX® Rxvp only)	Dir Z-Mark	DRZ	1-3 / ?

0-100'000 / ?

0/?

0-1/?

									\cap
J	E	N	N	Y	S	C	E.	N	C

Speed [inc/s] for seeking z-mark If there is no z-mark on the encoder, set SPZ = 0 (ROTAX® Rxvp 10-100'000Inc/s)	Speed Z-Mark	SPZ
Position of Z-mark in reference to internal home sensor of ROTAX [®] Rxvp. Will be saved after first reference and remains from then on unchanged. With RXZP0 this value can be deleted and ROTAX [®] Rxvp will be set to default at time of delivery.	Rotax Z-Mark Position	RXZP
Kind of position determination when referencing with absolute measuring systems. The position is always reset to the single-turn position by the referencing. 0 = Calculated determination (default) 1 = Position is read out by the measuring system Reading from the measuring system (setting 1) can lead to the Safety Limited Speed being exceeded if SLS is active.	Enable Absolute Reference	ENAR

9.6.9 Move Commands

E

DESCRIPTION	Short	CMD	PARAMETER
Go direct to rated position absolute, Inc	Go direct Position	G	± 2'000'000'000
Go to position absolute	Go Position	GP	(Position = PO value)
Go way relative	Go Way	GW	(Way = WA value)
Go to zero-mark on encoder disk	Go Z-Mark	GZ	
Jog (run) positive, v = constant	Jog Positive	JP	(Speed = SP value)
Jog (run) negative, v = constant	Jog Negative	JN	(Speed = SP value)
Repeat way (command WA) positive <-> negative xx times	Repeat Reverse	RR¹)	1-100'000 (Way = WA value)
Repeat way (command WA) in same direction xx times	Repeat Way	RW¹)	1-100'000 (Way = WA value)
Waiting time on command RR and RW	Wait Repeat	WT')	1-10'000 (ms)
Waiting time for command RR and RW, initial value after powerup	Wait Repeat Initial Value	WTI')	1-10′000 (ms)
Run index number	Index	IX	1-50
Run profile	Profile	PRF	1-5
Move DRIVE I_FORCE No. xx	Drive I Force	DIF	хх
Stop program and motion with deceleration	Stop Motion	SM	

9.6.10 Index (programmed movements)

DESCRIPTION	Short	CMD	PARAMETER
Run index number	Index	IX	1-50
Number of index pre-load for changing index parameters by remote control	Number Index	NIX	1-50
Acceleration write in Index at the NIX preloaded number (stored in non-volatile memory, still effective after power cycle)	Accel. Index	AIX	2-1'000'000 (x1000) Inc/s ²
Acceleration write in Index at the NIX preloaded number (not stored in non-volatile memory, only effective until the next power cycle)	Accel. Index Dynamic	AIXD	2-1'000'000 (x1000) Inc/s ²
Speed write in Index at the NIX preloaded number (stored in non-volatile memory, still effective after power cycle)	Speed Index	SIX	10-10'000'000 Inc/s

JENNY SCIEN(

Speed write in Index at the NIX preloaded number (not stored in non-volatile memory, only effective until the next power cycle)	Speed Index Dynamic	SIXD	10-10'000'000 Inc/s
Distance write in Index at the NIX preloaded number (stored in non-volatile memory, still effective after power cycle)	Distance Index	DIX	± 2'000'000'000 Increment
Distance write in Index at the NIX preloaded number (not stored in non-volatile memory, only effective until the next power cycle)	Distance Index Dynamic	DIXD	± 2'000'000'000 Increment
Save index type in index for the preselected number with NIX (1 = absolute, 2 = relative) (stored in non-volatile memory, still effective after power cycle)	Type of Index	түіх	1,2 / ?
Save index type in index for the preselected number with NIX (1 = absolute, 2 = relative) (not stored in non-volatile memory, only effective until the next power cycle)	Type of Index Dynamic	TYIXD	1,2/?

Ε

9.6.11 Program / Application

DESCRIPTION	Short	CMD	PARAMETER
Run program number	Program	PG	1-63
0 = Program 115 max. 50 program lines, Program 1663 max. 10 program lines 1 = Program 15 max. 130 program lines, Program 663 max 10 program lines Important: Changes of PMAP parameter clears entire program memory	Program Mapping	ΡΜΑΡ	0,1/?
Save Application (incl. parameters) to Start-up Key	Save to Start-up Key	SVST	

9.6.12 Force Control Forceteq[®] basic

DESCRIPTION	Short	CMD	PARAMETER
Force Calibration is started with distance parameter. Value from 1 to 10'000'000 = Distance in Inc. of the scan run. ? = Returns whether scanned values are available 0 = Force Calibration delete scanned values	Force Calibration	FC	0-< stroke LINAX®/ELAX® or way ROTAX® / ?
The Force Calibration works iteratively and improves itself in repeated execution. If the motor oscillates during the Force Calibration, then wrong values are stored and the oscillation increases. In this case, the scanned values must be deleted with FC0 before starting a new Force Calibration. In the libraries for the operation with bus module, there exists an input "Iterative FC disable" in the function block JS_MC_ForceCalibration for this case.			
Important: Force Calibration scan drive will begin at current position			
Test function to check Force Calibration effect through manual movement of the carriage slider. 2 = Test Force Calibration On (without active compensation) 1 = Test Force Calibration (with active compensation)	Force Calibration Test	FCT	0,1,2 /?

0 = Test Force Calibration off (Servo holds position)

									\cap	
J	E	N	N	Y	S	C	E	N	C	- 6

Request Status of Force Calibration: 0 = No Force Calibration scan values available 1 = Force Calibration scan values available	Force Calibration Valid	FCV	xx / ?
Automatic I_Force Drift Compensation Drive in positive direction	I_Force Drift Compensation Positive	IFDCP	
Automatic I_Force Drift Compensation Drive in negative direction	I_Force Drift Compensation Negative	IFDCN	
I_Force Drift Compensation Settings, bitwise coded: Bit0: Continuous compensation at disabled power stage Bit1: Automatic compensation before force calibration Bit2: Continuous compensation at enabled power stage at applicable position (see command PIFDC)	I_Force Drift Compensation Settings	IFDCS	0-7 / ?
Position for I_Force Drift Compensation at enabled power stage, depending on the motor type	Position I_Force Drift Compensation	PIFDC	?
Maximal approved force-proportional current [x10mA] 0 = Deactivated → As soon as the max. approved current has been hit, info "30" is being activated and can be retrieved over Process Status registry Bit 15 "I_FORCE_LIMIT_REACHED" with command TPSR (Refer to chapter 9.6.17 System Information)	Limit I_Force	LIF	0 – value of "I run" / ?
Change Limit DR_I_FORCE to xx x 10mA value xx will overwrite the current parameter DR_I_Force, until DRIVE I_FORCE END	Change Limit I Force	CLIF	хх
Driving with limited force until reaching an object or the end position if there is no object. xx= [1-10] No. of the selected Drive I_Force parameter set	Drive I_Force	DIF	хх
Force-proportional, actual current-value filtered [mA]	I Force Actual	IFA	
Actual motor current [mA]	Tell motor current	тмс	
Select sectors which should be active. E.g. xx = 100110-> active are the sectors 2,3,6 Binary from right side LSB (binary notation, LSB = sector 1)	Select Sectors	SSEC	xx / ?
Reads I_FORCE peak value [x1mA] xx=not defined-> Max peak value over all sectors xx=n-> peak value of sector n	I Force Peak	IFPK	ХХ
shows the active sectors which force curve did not correctly pass through E.g. xx = 1001->Error in sector 1 and 4. (binary notation, LSB = sector 1)	Sector I_Force Curve Failed	SIFF	xx / ?
Is taking current actual position as an offset for all sectors with restart of monitoring. Furthermore the positions "Wait for distance greater/less" and	Take Position as Sector Offset	TPSO	
"Jump if distance greater/less" are adjusted by this offset.	Cat Castor Officiat		w / 2
Furthermore the positions "Wait for distance greater/less" and "Jump if distance greater/less" are adjusted by this offset xx. E.g. xx = 0, sets offset to 0	Set Sector Offset	330	** / :
Selecting sector number for which parameters shall be changed. xx = [1-10] Sector number, NSEC? = Retrieving the selected sector number.	Number of Sector for change parameter	NSEC	xx / ?
Sector start distance. xx = [Inc] starting distance (current position – sector offset)	Sector I Force Start	SIFS	xx / ?
Sector end distance. xx = [Inc] ending distance (current position – sector offset)	Sector I Force End	SIFE	xx / ?
E moving precisely, within tight space

Lowest value I_Force in pre-selected sector. xx [x10mA]
Highest value I_Force in pre-selected sector. xx [x10mA]
Definition of transitions Entry and Exit in sector
<pre>xx = activated transition 1,2,3,4 Entry/Exit</pre>

Bit 1512	118	74	30	ХХ
Entry	not used	Exit	not used	
4 3 2 1	0	4 3 <mark>2</mark> 1	0	Transition.
0001	0000	0010	0000	bin
1	0	2	0	hex
	dec			

Selecting Drive I_Force number in which parameters shall be changed. xx= Drive I_Force number 1-10. NDIF? = Retrieving selected sector number Acceleration for Drive I_Force xx [x1'000 inc/s²]

Speed for Drive I_Force [inc/s]

Limitation of I-Force current while Drive I_Force [x10mA]

Direction Drive I_Force xx = 0 ->positive, xx =1 -> negative

I Force High	IFH	xx / ?
I Force Low	IFL	xx / ?
Sector Transition	STC	xx / ?
Configuration Decimal		
Sector Transition	STCX	xx / ?

Configuration Hexadecimal

Number of Drive I_Force to change parameter	NDIF	xx / ?
Acceleration of selected Drive I_Force	ADIF	xx / ?
Speed of selected Drive I_Force	SDIF	10-10'000'000 / ?
I_Force Limit of selected Drive I_Force	IDIF	0-1800/?
Direction of selected Drive	e DDIF	xx / ?

9.6.13 Event

DESCRIPTION	Short	CMD	PARAMETER
Event activation	Event Status or Input	EVT	0,1
0=All input events enabled 14= Event of input 14 enabled	Event Track Input	ETI	0-4
0= All input events disabled 14 = Event of input 14 disabled	Disable Track Input	DTI	0-4

JENNY SCIENCE moving precisely, within tight space

9.6.14 Input / Output

DESCRIPTION	Short	CMD	PARAMETER
High / Low Activity of PLC outputs -> refer chapter 4.4 Output Configuration	Set Output Activity	SOA	0-3
Set PLC output to logic 1 (level according, SOA)	Set Output	SO	1-2
Equivalent to SO, but set all outputs binary coded Bit 0 = Output 1, Bit 1 = Output 2	Set Output Hex	SOX	0-3
Clear output (level according, SOA)	Clear Output	со	1-2
Status all Outputs, 0= logic 0, 1=logic 1	Tell Output	то	
Status all Outputs in HEX format	Tell Output HEX	тох	
Preload output number for output function assignment with command TYOF	Number Output Function	NOF	1-2
Assign type of output function to the with NOF preloaded output number (0 = no function, 1 = REFERENCE, 2 = IN MOTION, 3 = END OF PROGRAM, 4 = TRIGGER, 5 = ERROR, 6 = BRAKE, 7 = IN POSITION, 8 = I FORCE MAX LIMIT, 9 = I FORCE IN SECTOR, 10 = IN SECTOR, 11 = IN FORCE, 12 = WARNING, 13 = INFORMATION)	Type Output Function	TYOF	0-13
Trigger upward counting, absolute, at output #x defined in Output-Function, pulse during 5ms	Trigger upward	TGU	± 2'000'000'000 Increment
Trigger downward counting, absolute, at output #x defined in Output-Function, pulse during 5ms	Trigger downward	TGD	± 2'000'000'000 Increment
0=all Input HIGH active, 1= all Input LOW active, 2= individual input activity selection according to ILAS (value 0 and 1 puts ILAS to 0x0 respectively 0xF)	Input LOW active	ILA	0-2 / ?
individual input activity selection, 0=Input HIGH active, 1=Input LOW active Hex value binary coded for input 1-4 (values 0x0 and 0xF put ILA to 0 resp. 1. All other values are to 2 by ILA	Input Low Active Single	ILAS	0-F / ?
Status all inputs, 0 = Low, 1 = High / ? incl. indication of input number	Tell Input	ті	1-4 / ?
Status single input, 0 = Low 1 = High	Tell Input	ті	1-4
Status all Inputs in HEX format	Tell Input HEX	тіх	
Preload input number for input function assignment with command TYIF	Number Input Function	NIF	1-4
Assign type of input function to the with NIF preloaded input number (0 = no function, 1 = REFERENCE, 2 = INDEX, 3 = PROGRAM, 4 = SET OUTPUT, 5 = CLEAR OUTPUT, 6 = JOG POSITIVE, 7 = JOG NEGATIVE, 8 = CAPTURE POSITION, 9 = INTERRUPT PROGRAM, 10 = STOP IMPULS, 11 = STOP IMPULS COUNTER, 12 = LIMIT SWITCH NEGATIVE, 13 = LIMIT SWITCH POSITIVE, 14 = EMERGENCY EXIT, 15 = EMERGEMCY EXIT POWER ON, 16 = POWER CONTINUE, 17 = PROFILE, 18 = REFERENCE LIMIT STOP, 19 = OVERRIDE, 20 = PROGRAM EXIT, 21 = DRIVE I_FORCE, 22 = POWER QUIT)	Type Input Function	TYIF	0-22
Parameter A of input function of with NIF preloaded input number (value depending on input function, according to value described in chapter 9.13.1 Selection of Input Functions)	Parameter A	PAIF	хх
Parameter B of input function of with NIF preloaded input number (value depending on input function, according to value described in chapter 9.13.1 Selection of Input Functions)	Parameter B	PBIF	уу

ENNY SCIENCE moving precisely, within tight space J

Parameter C of input function of with NIF preloaded input number (value depending on input function, according to value described in chapter 9.13.1 Selection of Input Functions)	Parameter C	PCIF	ZZ
Shows present position captured with input	Tell Capture Position	ТСР	1-4
Shows the position captured with input 4	Tell Capture Pos. Buffer	тсрв	1-8
Set all 8 capture Position Register to 0	Clear Capture Position	CLCP	1-8 (all)
Activate capture position function over input 4	Capture Pos. Input 4	CP4	0,1
Break Delay in [ms] Attention: no works with the SMU module	Break Delay	BRKD	1-1000 (ms) / ?

9.6.15 Correction Table

DESCRIPTION	Short	CMD	PARAMETER
Status of correction table: 0= correction table deactivated 1= correction table activated 2= correction table initialized (physical values = Encoder value)	Correction Table State	СТАВ	0-2 / ?
Starting position of the correction table in [inc]	Correction Table Position Start	CTPS	0-500'000'000 / ?
Distance between the entries in the correction table in [inc]	Correction Table Distance Points	CTDP	10-30'000'000 / ?
Preselect absolute encoder position in correction table in [inc]	Correction Table Preselect Position	СТРО	0-2'000'000'000 / ?
Physical position deviation for preselected encoder position in correction table in [inc]	Correction Table Value	CTVA	-30'000-30'000 / ?

JENNY SCIENCE moving precisely, within tight space

9.6.16	Limit	Position	ELAX ®

DESCRIPTION	Short	CMD	PARAMETER
Start calibration of the internal mechanical limit stop positive. After the calibration the value can be read with <i>DMLPP</i> .	Mechanical Limit Calibration	MLC	
Position of the detected internal mechanical limit position positive ? = Returns the position of the detected internal mechanical limit stop positive.	Detected Mechanical Limit Position Positive	t DMLPP	0, <stroke elax=""> - <stroke ELAX + 3mm> / ?</stroke </stroke>
0 = Deletes the position of the detected internal mechanical limit stop positive Note:			
 If DMLPP is deleted (DMLPP = 0), the value for the internal mechanical limit stop for the reference in positive direction is <stroke +="" 1mm="" elax=""></stroke> 			
 If the value for the internal mechanical limit stop positive is known, this value can be set without calibration (without command MLC). 			
Position of the detected external mechanical limit stop position negative.	Mechanical Limit Position Negative	MLPN	<-3mm> - <stroke +<br="" elax="">3mm> / ?</stroke>
? = Returns the position of the detected external mechanical limit stop negative.			
0 = Deletes the position of the detected external mechanical limit stop negative			
Note:			
 MLPN always needs to be chosen smaller than MLPP 			
 If MLPN is deleted (MLPN = 0), the value for the internal 			
mechanical limit stop itself is used for the reference in negative			
direction, which is <-1mm> as per definition.			
- The position of an externally mounted mechanical limit has to be			
accurate. If the entered position of the externally mounted limit			
stop is wrong, the alignment of the coils to the magnets cannot be			
completed and the motor won't be capable to drive			
Position of the detected external mechanical limit stop position positive.	Mechanical Limit Position Positive	MLPP	<-3mm> - <stroke +<br="" elax="">3mm> / ?</stroke>
? = Returns the position of the detected external mechanical limit stop negative.			
0 = Deletes the position of the detected external mechanical limit stop negative.			
Note:			
 MLPP always needs to be chosen bigger than MLPN 			
- If MLPN is deleted (MLPN = 0), the value for the internal			
mechanical limit stop itself is used for the reference in negative			
direction, which is <-1mm> as per definition.			
- The position of an externally mounted mechanical limit has to be			
accurate. If the entered position of the externally mounted limit			
stop is wrong, the alignment of the coils to the magnets cannot be			
completed and the motor won't be capable to drive			

moving precisely, within tight space

JENNY SCIENCCE

9.6.17 System Information

DESCRIPTION	Short	CMD	PARAMETER
Present position ± 2*10E9	Tell Position	ТР	
Require actual motor velocity [inc/s]	Tell Velocity	тv	
Motor temperature in degree Celsius	Tell Temperature	тт	
Voltage at the power input in [mV]	Tell Voltage Power Supply Motor	TVPSM	
Status: 0 = Power OFF, 1 = Power ON, 2 = In Motion, 9 = Error	Tell Status	TS	
Binary coded process status, size of return string 4 Bytes in HEX	Tell Process Status	TPSR	
format	Register		
$REFERENCE = BII \mathbf{I}$ $IN MOTION = RIT 2$			
IN POSITION = BIT 3			
END_OF_PROGRAM = BIT 4			
IN_FORCE = BIT 5			
IN_SECTOR = BIT 6			
FORCE_IN_SECTOR = BIT 7			
INVEKTER_VULTAGE = BIT 8			
NEGATIVE LIMIT SWITCH = BIT 10			
POSITIVE_LIMIT_SWITCH = BIT 11			
EMERGENCY_EXIT_1, REMAIN POWER ON = BIT 12			
(Function can only be used without bus module.			
With bus module, apply function "EMERGENCY_EXIT").			
EMERGENCY_EXIT, POWER OFF = BIT 13			
FORCE_CALIBRATION_ACTIVE = BIT 14			
STO PRIMED/HIT = BIT 16			
SS1 PRIMED/HIT = BIT 17			
SS2 PRIMED = BIT 18			
SS2 HIT = BIT 19			
SLS PRIMED = BIT 20			
SLS SPEED הוו = BIT 21 SI S POSITION HIT = BIT 22			
WARNING = BIT 23			
INFORMATION = BIT 24			
PHASING DONE = BIT 25			
I_FORCE_DRIFT_COMPENSATION_DRIVE_ACTIVE = BIT 26			
FORCE_LIMIT_REACHED = BIT 27	- 11		
Actual motor current [mA]	Tell motor current	TMC	
Motion time [milliseconds] of the last profile drive	Tell Motion Time	тмт	
Read process timer [m] refer also program functions TIMER_START, TIMER_STOP	Tell Process Time	ТРТ	
Version number of installed firmware	Version	VER	
Returns all the versions of Firmware, Bootloader, WebMotion®	Version All	VERA	
Versions number of the installed bus module firmware	Version Bus Module	VERB	
Versions queries of the boot loader (from version V4.00)	Version Boot Loader	VERL	
Read the Ethernet MAC Adress	Ethernet MAC Adress	EMAC	?
MAC address query of PROFINET / Powerlink / EtherNet/IP	MAC address Bus Module	МАСВ	
bus module			
Temperature control, instantaneous value integration	I2T	I2T')	
Temperature control, maximum value integration painter	I2TM	12TM1)	
Returns the current DS402 ModeOfOperation	Tell ModeOfOperation	тмо	
•	•		

moving precisely, within tight space

JENNY SCIEN (CE

9.6.18 Ethernet

BESCHREIBUNG	KÜRZEL	BEF	PARAMETER
Ethernet TCP/IP-Adresse Example: EIP192.168.2.100 (Default value)	Ethernet TCP/IP Adress	EIP	xxx.xxx.xxx.xxx / ?
Ethernet NetMask Example: ENM255.255.252.0 (Default value)	Ethernet Net Mask	ENM	xxx.xxx.xxx./?
Ethernet Gateway Example: EGW192.168.2.1 (Default value)	Ethernet Gateway	EGW	xxx.xxx.xxx./?
Ethernet Port Nummer Example: EPRT10001 (Default value)	Ethernet Port	EPRT	1 – 65535 / ?
Abfrage der Ethernet MAC Adresse	Ethernet MAC Adress	EMAC	?
Restore the factory settings for the Ethernet TCP/IP IP Adress to 192.168.2.100 NetMask to 255.255.252.0 Gateway to 192.168.2.1 Port Number to 10001	Reset Ethernet	RESETH	

9.6.19 Bus Module

DESCRIPTION	Short	CMD	PARAMETER
Baud rate of the optional CANopen interface	CAN Baud rate	CAB	1'000-1'000'000 / ?
Set cycle time [microseconds] in Cyclic Synchronous Position	PDO Cycle Time	РСТ	100-10'000 / ?
Mode (DS402). Used RMR for interpolation. Only multiple of			
100 micro seconds possible			
Versions number of the installed bus module firmware	Version bus module	VERB	
IP address queries EtherNet/IP modules (from version V4.00)	IP Address bus module	EIPB	
Reset bus module	Reset bus module	RESB	
MAC address query of PROFINET / Powerlink / EtherNet/IP	MAC address bus module	MACB	
bus module			

9.6.20 DS402 Compatibility

DESCRIPTION	Short	CMD	PARAMETER
Re-adjust Bit "P402 Set Point Acknowledge" to behavior. equal or smaller than firmware V3.68H	Set Point ACK disable	SPAD	0,1/?
Enable = 1 / Disable = 0 of the automatic reference drive when entering DS402 Mode of Operation 6	Automatic Reference	AREF	0,1/?

JENNY SCIEN ()

9.6.21 Error Handling

Ε

DESCRIPTION	Short	CMD PARAMETER	
Error number 01-99	Tell Error	TE	
Error number description string	Tell Error String	TES	
Retrieving error buffer (last 10 appearing info's, warnings or errors)	Tell Error Buffer	TEB	
Clears the error buffer (TEB)	Tell Error Buffer Clear	TEBCRL	

9.6.22 System Monitoring

DESCRIPTION	Short	CMD	PARAMETER
Switching off or turning on the encoder plausibility test: 0=Encoder plausibility test on 1= Encoder plausibility test off (for rotary motors only)	Encoder Plausibility Checking Disable	ENCPD	0-1/?
Watchdog for Serial/Ethernet interface 0 = deactivated 1-60'000 = Watchdog time in [ms]. If output stage is on and no ASCII command was received over the Serial or Ethernet for <wd> ms, output stage is turned off and error code 77 is shown.</wd>	Watchdog	WD	0-60'000 ms / ?
Echo for Serial/Ethernet interface (Default on) 0 = Off / 1 On	Echo	ECH	0-1/?

9.6.23 License

DESCRIPTION	Short	CMD	PARAMETER
License code for optional XENAX [®] functionalities. Generate from the MAC-address	License code	LICC	License code / ?
Read the internal license's-register Bit 0 LINAX enabled Bit 1 I-FORCE enabled	License register	LICR	?

The force processes of the XENAX[®] Xvi servo controller cover four functionalities:

- I_FORCE CALIBRATION: Calibration of the motor through detection of all idle running forces including the payload of the client specific installation on the slide. This creates the basis to precisely determine the external application forces.

 - I_FORCE LIMITATION: Driving with limited force to an object or an end position if there are no objects (e.g. inserting parts). Or driving with very little force in order to detect an "object's touching position".

 I_FORCE MONITORING: Monitoring the force progression by defining sectors in a force/way diagram (e.g. inspecting switches). These sectors can automatically be adjusted towards the "object's touching position".

 - I_FORCE CONTROL: Integration of different FORCE functions into a program. This is how it becomes possible to use the force processes decentrally in the standalone operation mode. Of course, these FORCE functions can also be invoked by a superior PLC through Ethernet fieldbus.

Refer to chapter 12 Forceteq[®] Force Measurement Technology for more information about force processes.

9.7 Move Axis by Forceteq®

		() e b N	lotion		JENNY	s с 1 Е Н(с Е
Qui	28 R					
	by click by command line by Forcelog® motion diagram					
	index drive i_force sector i_force program Vo		START 0		Diag I_Force Log I_Force / Position with defined sectors	Program Define Programs with L/Force Calibration Limitation and Monitoring
	profile Captured pos		Start Reset		Sector I_Force	Drive I_Force
	state controller motor reference basic settings		SERVO ON CALIBRATION ON CALIBRATION OFF	Stop Motion	Define Sectors L_Force / Positions for monitoring	
	version update					

9.8 Move Axis Motion Diagram

Recording position, speed, IForce and position deviation

LOGGING AUTO

Recording starts, as soon as the drive has started. The record lasts until the drive and a possible program have ended.

LOGGING TIME

Recording starts, as soon as the drive has started. The record lasts as long as the time indicated (2-8000ms).

record new

Initialization for new recording sequence. Wait for message "ready for recording next motion". Start motion in command panel (*move axis / by click* or *by command line*) e.g. G44000.

SPEED

Records speed in increments in relation to the position.

I_FORCE

Records current in milliampere in relation to the position.

DEVIATION

Records position deviation in increments.

Zoom

Zoom of curve section on time axis. By dragging the mouse over a time section, this part can be zoomed.

The "Reset" button undoes the zoom action. With the "Pan" key the time axis can be moved with the mouse.

moving precisely, within tight space

JENNY SCIEN (C

Command

Ē

Enter command e.g. starting position of the motor, REF, G0, drive on a position or repeat reverse (RR).

CURSOR VALUE

Shows the current values at the time of the cursor in the recording.

safe file

Saves the motion profile on the computer.

open file

Shows a motion profile which was saved on the computer. The upload has no influence on the parameters of the servo controller.

9.9 Index

Acceleration (2-1'000'000'000 x 1'000 Inc/s²) Speed (10-100'000'000 Inc/s) Distance in Inc ABSOLUTE (Position), RELATIVE (Way)

An Index is a motion profile and contains acceleration (ACC), speed (SPEED), distance (DISTANCE) and TYPE of distance ("ABSOLUTE" with reference to the zero position or "RELATIVE" with reference to the present position).

The values always refer to increments of the incremental encoder. The INDEXES simplify programming and reduce the communication time by serial control. Execute with IXxx<CR>. A maximum of 50 INDEXES can be predefined.

> **NEW** Create new index

Parameter of the Index

ACCx1000 SPEED DISTANCE TYPE

COMMNANDS

CLEAR = Clears the Index TEACH POS = Current position is set in the field "DISTANCE" EXECUTE = Index will be executed COPY TO IXxx = Index will be copied into a new Index

JENNY SCIEN (C

A DRIVE I_FORCE is driving with force consisting of acceleration (ACC), speed (SPEED), current (I_FORCE) and driving direction (DIRECTION).

Up to 10 DRIVE I_FORCE can be stored.

NEW Create new Drive I_Force

Parameters of the Drive I_Force ACCx1000 SPEED I_FORCEx10 DIRECTION

COMMANDS

CLEAR = Clears the Drive I_Force EXECUTE = Drive I_Force will be executed COPY TO DIFxx = Drive I_Force will be copied into a new Drive I_Force

> A DE N N Y C C CUERCIAN W C D M O C CUERCIA

9.11 Sector I_Force

In the WebMotion[®] program menu "sector I-force" up to 10 different force sectors can be defined.

Example:

Once an object is touched the force progression shall be examined in a sector of 150 to 170 Increments. When entering the force sector ("ENTRY") the force should be between 3 and 4N. When exiting the sector ("EXIT"), the force should have reached 4N. These force specifications are defined with the in the force sector incoming and exiting sector boundaries.

> Refer more Information in chapter 12 Forceteq[®] Force Measurement Technology.

Acceleration (2-1'000'000'000 x1000 Inc/s²) Speed (10-100'000'000 Inc/s) Force Limitation (0-1'800 x10 mA) POSITIVE = Positive direction, NEGATIVE = Negativ direction

9.12 Program

E

Here you can define program sequences line by line.

PROGRAM

Select, create, copy or delete a program.

LINES

In this list all defined program lines of the present program will be shown. Maximum number of lines depends on program mapping (PMAP, default = 0):

PMAP = 0 Prog 1-15: 50 lines Prog 16-63: 10 lines PMAP = 1 Prog 1-5: 130 lines Prog 6-63: 10 lines

COMMANDS

CLEAR = Clears the Program-line MOVE UP = Program-line will be moved up MOVE DN = Program-line will be moved down

NEW LINE

A new program-line will be inserted in the last line

INSERT LINE

A new program-line will be inserted into any line. The following program lines are shifted by one line.

9.12.1 Program commands

Description	Command	Parameter	Master / Slave
Reference for LINAX [®] /ELAX [®] / ROTAX [®] and third party motors	REFERENCE		MS
Execute index number xx or change according operation vy with distance zz	INDEX	xx, yy, zz	MS
Operation "FXF": Drive index No. xx			
and start a new index after COMPLETION 77% of the			
actual index command			
ACTION -": Set index distance to zz			
ACTION _+": Increase Index distance to zz			
ACTION ": Poduce Index distance by ZZ			
ACTION _POS ^(*) : Set Index distance to the slider actual			
ACTION "FOS . Set muck distance to the sinder actual			
position. Set Output number w		XX	M
Set Output number w		XX	
Clear Output number xx	CLEAR OUTPUT	XX	IVIS
Go to Line number xx	GOTO LINE	XX	
Go to line number xx, it input number yy active	GOTO LINE IF INPUT	хх, уу	
Set Loop Counter # to xxxx (1-10000)	SET LOOP COUNTER (A-E)	XXXX	
Decrement Loop Counter #, if not zero, jump line xx.	DEC LOOP COUNT (A-E) JNZ LINE	XX	
Loop counters can be interleaved with each other	·····		
Wait xx ms (in 10ms resolution)	WAIT TIME (ms)	хх	
Wait for logical High of Input number xx within timeout	WAIT INPUT NR HIGH	хх	MS
frame yy, otherwise jump to line zz "error handling"			
(timeout can only be used locally, not for (remote)			
Wait to logical Low of Input number xx within timeout	WAIT INPUT NR LOW	xx	MS
frame yy, otherwise jump to line zz <i>"</i> error handling"			
(timeout can only be used locally, not for remote)			
Set position counter to 0, (not possible with LINAX®/	CLEAR POSITION		
ELAX [®] , with ROTAX [®] only possible if it is not			
referenced)			
Execute Profile number xx	PROFILE	хх	MS
Start process timer	TIMER START		
Stop process timer	TIMER STOP		
Command TPT (Tell Process Timer) returns measured			
time in milliseconds			
LINAX [®] /ELAX [®] drives to mechanical limited position,	REF LIMIT STOP		
refer setup / reference.			
Executing Force Calibration, Start Pos xx, End Pos yy	FORCE CALIBRATION	xx, yy	
Automatic I Force Drift Compensation drive	I FORCE DRIFT COMPENSATION	XX	
xx = POS => drive in positive direction	_		
xx = NEG => drive in negative direction			
Execute DRIVE I FORCE No. xx	DRIVE I FORCE	хх	
Selection of active sectors with Bit mask.	SELECT SECTORS	хх	
E.g. xx = $1010 \rightarrow$ sectors 2 and 4 are active. LSB is on			
right.			
Wait until Limit L FORCE is reached according	WAIT LIMIT L FORCE	XX. VV	
parameter DRIVE FORCE within timeout xx, otherwise		, 11	
iump to line vyerror handling"			
Wait for distance (absolute position – Sector Offset) to	WAIT FOR DISTANCE GREATER	XX. VV 77	
be greater than xx within timeout frame vy otherwise		···· , , , , , , , , , , , , , , , , ,	
iump to line 77error handling"			

JENNY SCIENCE moving precisely, within tight space

Wait for distance (absolute position – Sector Offset) to be smaller than xx within timeout frame yy, otherwise	WAIT FOR DISTANCE LESS	xx, yy, zz	
Wait for process status register Bit xx High within timeout frame vy. otherwise jump to line zz "error handling"	WAIT PROCESS STATUS BIT HIGH	xx, yy, zz	
Wait for process status register Bit xx Low within timeout frame vy, otherwise jump to line zz "error handling"	WAIT PROCESS STATUS BIT LOW	xx, yy, zz	
Is taking the actual position as offset value for all sectors followed by the restart of monitoring. Furthermore the positions "Wait for distance greater/less" and "Jump if distance greater/less" are	TAKE POS AS SECTOR OFFSET		
Setting offsets for all sectors followed by the restart of monitoring. xx = [Inc] Offset Furthermore the positions "Wait for distance greater/less" and "Jump if distance greater/less" are being adjusted by the offset xx as well. e.g. xx = 0, sets offset incl_TAKE POS AS SECTOR OFFSET to 0	SET SECTOR OFFSET	хх	
Changing Limit DR_I_FORCE to xx x 10mA Value of I_FORCE will overwrite the current parameter I Force in DRIVE I FORCE until DRIVE I FORCE END	CHANGE LIMIT I_FORCE	хх	
Jump to line zz if distance xx (absolute position – sector offset) greater than xx e.g. driving distance was too big after force was reached	JUMP IF DISTANCE GREATER	xx, zz	
Jump to line zz if distance (absolute position – sector offset) smaller than xx e.g. driving distance was too small after force was	JUMP IF DISTANCE LESS	XX, ZZ	
Jump to line xx "error handling" if one or more sectors are not passed correctly. Only active sectors are being tested. Caution: Before this analysis can be done, "DRIVE L FORCE END" has to be completed.	JUMP IF I_FORCE SECTORS FAULT	хх	
Stop Drive I_Force, current position = set point position, parameter LIMIT DR FORCE inactive	DRIVE I_FORCE END		
Power stage turned off, the linear motor can be moves by hand.	POWER QUIT		MS
Power continues (>PWC) Turning on the power stage while using the most recent absolute position and without the need of referencing the linear motor, e.g. after error 50 or after "Power Quit". This is only possible as long as the logic supply has not been interrupted after the linear motor was referenced.	POWER CONTINUE		MS
Program is being ended and does not proceed to last line. Beneficiary for "error handling"	PROGRAM END		
Important Note: All entries in menu application / program must be "saved" in order to be activated			
MS: Master/Slave function can be started on			
anotner controller. LOC = Local, ID14 = Device with according Card			

Identifier (CI).

Example: Initialization LINAX[®]/ELAX[®]

This example shows the initialization of a LINAX[®]/ELAX[®] linear motor with the command REFERENCE which then drives to a defined starting position (INDEX 1).

The start position is free to choose as long as it is within the stroke of the motor. In this example the axis drives to start position 0.

Important:

The command REFERENCE has to be completed once after powering on the servo controller. Only after reference, other motion commands are possible.

Example: Initialization ROTAX[®] or third party motors

The reference function for rotary motors can be defined in the menu *setup / reference* (refer chapter 9.18.3 Reference ROTAX[®] und Third Party Motors). With this function the motor drives first to a reference switch (approx. zero) and then to the encoder Z-mark.

If reference position differs from starting position, an index (INDEX 1) can be executed to move to start position.

The program starts with the ASCII command "PG1" in the menu *move axis / by command line* or by activating an input function "PG1".

9.13 I/O Functions

OUTPUT FUNCTIONS

Assigning output functions to a physical output. ON und OFF of the outputs by mouse click.

INPUT FUNCTIONS

Assigning input functions to a physical input. Choice of high- or low-activity of all inputs.

In the operations overview, the physical input and output conditions are displayed.

9.13.1 Selection of Input Functions

 LINAX[®]: Reference for LINAX[®], travels the distance of two coded reference marks and calculates the absolute position according LINAX[®] linear motor. ELAX[®]: Reference for ELAX[®], the absolute potion is determined by driving to a mechanical limit. ROTAX[®] and third party motors: Complete Reference according to REFERENCE for ROTAX[®] and third party motors 	REFERENCE	
Execute index number xx or change according operation yy with distance zz	INDEX	xx, yy, zz
Execute Program xx	PROGRAM	xx
Set output xx	SET OUTPUT	xx
Clear output xx	CLEAR OUTPUT	xx
Drive (Jog) positive (const. speed xxxxx inc/sec) while input # is active	JOG POSITIVE	XXXXX
Drive (Jog) negative (const. speed xxxxxx inc/sec) while input # is active	JOG NEGATIVE	ххххх
Capture Position, on triggered edge at input	CAPTURE POSITION	
Interrupt program, while Input active	INTERRUPT PROGRAM	
Stop Impulse, edge triggered*) If a LINAX [®] is connected, it behaves like "STOP IMPULS COUNTER"	STOP IMPULS	
Stop Impulse Counter, like "STOP IMPULS" but does not set position counter to 0*)	STOP IMPULS COUNTER	
Limit-switch negative*)	LIMIT SWITCH NEGATIVE	
Limit-switch positive*)	LIMIT SWITCH POSITIVE	
Emergency Exit with power off*)	EMERGENCY EXIT	
Emergency Exit with power on, Position stop (Function can only be used without bus module. With bus module, apply function "EMERGENCY EXIT")	EMERGENCY EXIT POWER ON	
Power ON continue, keep encoder counter	POWER CONTINUE	
Execute profile nr. xx	PROFILE	хх
Reference Limit Stop, also refer menu <i>setup / reference</i>	REFERENCE LIMIT STOP	
Speed and acceleration will be reduced by xx percent	OVERRIDE	xx
Stops and quits active program	PROGRAM EXIT	
Drive I_Force No. xx	DRIVE I_FORCE	xx
Power stage turned off, the linear motor can be moved by hand.	POWER QUIT	

*) Stop with ED (Emergency Deceleration) braking ramp

Notes to Input Functions:

Except "EMERGENCY EXIT" and "EMERGENCY EXIT POWER ON" all input functions must only be parameterized in a Pick & Place Maser or Gantry Master.

For rapid deceleration in emergency shut down situations ("LIMIT SWITCH NEGATIVE", "LIMIT SWITCH POSITIVE", "EMERGENCY EXIT", "EMERGENCY EXIT POWER ON", "STOP IMPULS", "STOP IMPULS COUNTER") the special ED (Emergency Deceleration) can be given a value (COMMAND > ED xxxxx).

The Emergency Exit functions have the highest priority and are always activated immediately. As long as "EMERGENCY EXIT" is active no other function can be executed.

For the other functions the following applies: If another function is already active it has to be finished before the next one is started. If several function calls are current at the same time, then the one with the lowest input number is executed first.

To run a program endlessly the assigned input can be simply left active.

With "INTERRUPT PROGRAM" the program being executed can be interrupted. If IP becomes inactive the interrupted program will be continued directly.

With "STOP IMPULS COUNTER" the running movement is stopped and aborted. A new travel command can then be executed even with unreleased stop impulse ("STOP IMPULS COUNTER" active).

9.13.2 Selection Output Functions

REFERENCE has been completed In motion, motor is running End of program Trigger (5ms, defined by TGU, TGD commands) Error pending Release brake In position, within deviation target position (DTP) Limit I_Force reached (command LIF) I Force In Sector, when motion is completed In Sector (during and after motion is completed) In Force (during and after motion is completed) Warning pending Information pending REFFERENCE IN MOTION END OF PROGRAM TGIGGER ERROR BRAKE IN POSITION I FORCE MAX LIMIT I FORCE IN SECTOR IN SECTOR IN FORCE WARNING INFORMATION

9.13.3 Operation with Additional Holding Brake

An additional holding brake for LINAX® Lxs and Lxu Motor types can be controlled with a XENAX® servo controller. The output function BRK (Brake) can be assigned to one of the controller outputs and used in combination with the BRKD (Brake delay) parameter.

This function allows the activation of a time delay by turning off the power stage. First the brake control signal output is set to low (brake is active) and after BRKD milliseconds (setting range from 1 to 1000ms) the power stage is turned off.

This feature allows an active braking with a switchedon power stage and after this a controlled power stage turn off, when the brake is safely on. The time delay is only effective by turning off the power stage.

san ba linkad with un to

9.14 Profile (Velocity)

Complex motion profiles can be linked with up to seven profile segments.

The XENAX[®] servo controller is able to store up to five profiles.

The profile definition includes a start position as well as absolute end-position, end-speed and acceleration of each profile segment. The result of these indications is the segment type (Speed up, Slow down, constant speed).

The "Profile Check" tests if the entered values can be realized with the connected linear motor.

Before profile curve starts, the linear motor has to be located at the predefined start position.

EDIT

NEW PROFILE = Enter new profile CLR PROFILE = Clear profile

CURRENT PROFILE

This list contains all predefined profiles.

PARAMETERS

Set up of the parameters in "CURRENT PROFILE"

S-CURVE	Percentage S-curve rounding of the profile. Automatic calculation of jerk parameter for each profile segment.
POSITION	First panel: Input absolute start position
POSITION	End position of corresponding profile segment
SPEED	End speed of corresponding profile segment
ACCx1000	Acceleration within profile segment
PROFILE CHECK	The parameters will be checked on drivability
	(is distance long enough for demanded
	speed and acceleration?)
	Correct profile segments are colored in green, wrong
	segments are red and untested segments are orange
ested profiles have to be stored in the	

Defined and tested profiles have to be stored in the servo controller under *"save"*.

A profile can be started with the command PRFx. X represents the profile number.

Profiles can also be started as input function or in a program.

JENNY SCIEN(C

9.15 Captured Pos

INPUT 2

CAPTURED POSITIONS				
TRIG SOURCE	 NPUT4 🔻		IN	PUTS 14 ▼
BUFFER 1		INPUT 1		
BUFFER 2		INPUT 2		
BUFFER 3		INPUT 3		
BUFFER 4		INPUT 4		
BUFFER 5				
BUFFER 6				
BUFFER 7				
BUFFER 8				
clear		clear		

The XENAX[®] servo controller has two special functions to read the current position of the motor.

Record function of the actual position controlled by Input

In the WebMotion[®] menu I/O, you can select the record function CPOS for all digital inputs 1-4.

Reaction time > 4 ms.

(Input 1 = Pos Input 1 etc. ASCII command: TCPn (n = register number)

Record function of the actual position controlled by edge

With each increasing edge at input 4, the current position of the motor is written in a buffer register (Start is Captured Pos 1).

Reaction time ~ $4-6\mu s$. (First edge position = Captured Pos 1 etc.) ASCII command: TCPn (n = register number)

Function is available over Jenny Science bus module in asynchronous operation, too.

Object	Sub Idx		ASCII
5000h	0x5010	CLCP Clear all Captured Position	CLCP
	0x5015	Captured Position Mode Input 4	CP40
	0x5016	Captured Position Mode Input 14	CP41
5003h	0x37 0x38	Read Buffer Position (18) Return of value	TCPn (n=18)

INPUT	ACTIVIT	Y FUNC	TION		
	(HIGH 1		TURE PO	SITION	V
2	(HIGH 1	·/	/		V
TRIG SOURCE			PUTS 14 ▼		
INPUT 1					

	TRIG SOURCE	(INPUT 4	V
	BUFFER 1			
	BUFFER 2			
	BUFFER 3			
	BUFFER 4			
	BUFFER 5			
	BUFFER 6			
	BUFFER 7			
	BUFFER 8			

9.16 State Controller

The closed loop control system consists of a state controller with observer.

Basic Settings

These settings consent a very easy and clearly arranged controller configuration for most common applications.

Basic PAYLOAD

Additional payload on the linear motor in g. The weight of the motor carriage slider is automatically taken into consideration with the motor identification.

Or

Basic INERTIA (only for ROTAX® and Third Party Motors)

Adjustment of the external torque of inertia. If a gear box is placed between the motor and the load, you must adjust the external torque of inertia according to the motor shaft. The gear transmission ration needs to be squared. e.g. With a gear transmission ratio of 20:1, we need to

reduce the external torque of inertia by a factor of 400.

For direct drive linear motors, it is important to set the parameter for the moment of inertia of the external payload (INERTIA), otherwise the linear motor oscillates. Because there is a factor of 10-9, there can be very large values. If so, please enter the parameter in the corresponding field. Calculation Example: The external payload is a homogenous disc of 1.1kg and Ø200mm. Formula is as following:

 $J = \frac{1}{2}m \cdot r^2 = 5.5 \cdot 10^{-3} \text{ kgm}^2$

scaling factor with 10^9 results in a parameter value of 5'500'000.

(Please refer to XENAX[®] Servocontroller/General files for XENAX[®] Xvi/PARAMETER OF ROTATIVE.*pdf* on www.jennyscience.ch/en/download.)

Basic GAIN POS

Gain of position controller. This parameter must be reduced when payload is increased. The "Auto Gain" function automatically proposes a value

Auto Gain

Sets the gain of position controller based on the entered payload value. This is a theoretically calculated value. A small adjustment might be necessary and can be completed with "GAIN POS".

Noise GAIN CUR

Gain of current controller. The reduction of this gain consents a diminution of noise emissions in case of sound-sensitive environments.

Deviation POS ACT

Maximum position deviation in encoder increments. If this value is exceeded, the error 50 occurs and flashes on the 7-segment display.

Deviation TARGET

Permissible position deviation in the target point until the status "in position" comes up.

Default

Standard setting of the different parameters. All parameters can be manually modified during the controller tuning and can be reset to default values with the "Default" button.

Advanced

Switch to advanced controller configuration parameters

Advanced Settings

These settings permit an advanced controller tuning for complexes constructions affected by mechanical vibrations.

Stability STAB - DYN

This parameter is set per default at 0 and consents to set the controller stability against external disturbances.

Settings in positive direction can improve the dynamic response of the system for basic mechanical construction with small payloads. Settings in negative direction can reduce the sensitivity of the system to mechanical vibrations.

Avoid vibration FREQ

Current filter frequency. The filter is best suited for the reduction of vibrations with well pronounced frequencies Typical values are in between 300-500Hz. At a value of 0, the filter is not active. The frequency can be automatically detected with an internal scan function (refer to chapter 9.16.1 F Setting) or eventually with the help of a smartphone app. There are 2 types of filters available "active" and "notch" which can be active on different frequencies. The "active" is to be preferred, as it has little influence on the control loop performance. For resonance frequencies with a wide spectrum, a "notch" filter should be used.

Swing out reduction

This feature permits an automatic modification of the target trajectory, so that the settling time after a finished move can be reduced. For this swing out reduction, two parameters have to be identified and set: damping and frequency of the oscillation. Setting one of the two parameters at 0 disables this feature.

Important Note:

The calculation of the target trajectory can not be abruptly changed in motion. After setting a new value for frequency or damping the axis should remain at standstill at least for 1000ms, before so that the new set of parameters will be inconsistent. (refer to Info 27 in chapter 15 Error Handling).

Attention:

In the case of cyclic interpolated target position operation with a superordinate PLC, the internal controller desired trajectory is modified and the original target position will be reached with some time delay. The correct reaching of the target position must be ensured, tracking the actual position value, prior to start a new motion.

Swing out reduction DAMPING

This parameter consents to set the damping of the mechanical swing out oscillation in % and depends on the load.

Swing out reduction FREQ

This parameter permits to set the frequency of the mechanical swing out oscillation with a resolution of 0.1Hz. These oscillations exhibit low frequencies (usually below 30Hz).

The slowest possible frequency to be set is 2Hz.

This frequency can be extracted for the "DEVIATION" curve in "Motion Diagram" if the ratio between load and slider load is sufficiently high. If this is not the case, this frequency can be determined with the help of a highspeed camera, an acceleration sensor or a smartphone app for vibration measurements.

Basic Settings

Switch to the basic controller configuration parameters.

9.16.1 F Setting

The band width of the position control (GAIN POS) should be set as high as the movements can be completed within the tolerable position deviation but before the motor begins to oscillate. In some applications, usually with high payloads, it sometimes happens that no setting can be found that meets both criteria. If the motor with a set band width begins to oscillate because of a resonance in the system, this oscillation can possibly be suppressed with a filter.

In the menu "state controller" in WebMotion® the correct PAYLOAD and the required GAIN POS have to be set. If the motor oscillates, the resonance frequency can be found and suppressed with the frequency analysis function.

With the button "Scan>", the frequency analysis pops up.

When operating, the frequency analysis can be started anytime. But because the current of the motor is being analyzed for the frequency analysis the, the output stage must be turned on. As soon as the analysis is completed, the measuring results are shown in WebMotion[®] and the frequency can be set.

	-15	-10	-5		5	10	15		Default
	•	5	00	1000	1	500	2000		Def Scan>
Swing out reduction	•	10	20) 3	0	40	50		Default
	0	5	10	15	20	25	30		

Settings for the Frequency Analysis:

Recordable Time:

The longer the recording time is, the higher is the frequency resolution, but the smaller is the measurable frequency range. For each recordable time, the according measurable frequency range will be shown. Please begin with the minimal recording time of 0.4s (with the maximal frequency range). For low resonance frequencies, the analysis can be repeated with higher recording time and reduced frequency range.

Go while F Analysis Turned off:

During the frequency analysis there is no movement of the axis. Please select this option, when the analysis should be completed in halt mode or when there is already a movement active (e.g. through a running program or through a superior PLC).

Turned on:

During the frequency analysis, the axis moves to the indicated position within the selected recording time.

F Analysis

Starts the frequency analysis (and the movement if "Go while F Analysis" is turned on).

Set

If the cursor is located in the adjustable filter frequency range (Notch: 160...2000Hz, Active: 200...2000Hz), the filter frequency can be set according to the frequency the cursor shows by clicking the button "Set". Directly after the frequency analysis, the cursor is automatically located on the frequency with the maximal amplitude within the adjustable filter frequency range. It is likely that this is where the resonance frequency is. However, the cursor can be moved anytime to set another filter frequency.

If the filter shall be turned off, then the button "Off" can be pushed.

0.4s 🔻	
0.4s	0.4s -> 0 – 5000Hz
0.8s	0.8s -> 0 – 2500Hz
1.6s	1.6s -> 0 – 1250Hz
3.2s	3.2s -> 0 - 625Hz

	Go <u>while</u>			
F Analysis to				
Pos	63712			

F	Analysis	

239 Hz = FCursor
Set
Off

Process of a Frequency Analysis:

This process shows a typical process of a frequency analysis:

Notes to frequency analysis:

- The filter frequency might not always be able to clear the oscillation. Especially when the resonance frequency is low, the controller can possibly be affected too much by the filter frequency and the oscillation won't disappear. In this case please reduce GAIN POS until the oscillation disappears.
- If there are multiple resonance frequencies, try to put the filter frequency in the approximate middle of the resonance frequency.
- On frequency 0, the mean current will be displayed during the frequency analysis. It corresponds to the DCportion of the motor current, which is rarely 0.

Diagram Amplitude

In this diagram, the amplitudes of all existing frequencies in the motor current are shown. The amplitude and the frequency of the cursor position are displayed on the left side of the diagram.

Diagram I-Motor

This diagram displays the motor current for the frequency analysis. The motor current and the recording time at the cursor position are displayed on the left side of the diagram. Furthermore the same legend shows the position the linear motor slide was located, at the time of the recording.

9.17 Motor

9.17.1 Motors LINAX® and ELAX®

Qu	ct tt	WebMotion • ontre	лемия встри() р
move axis	by click by command line by Forceteq® motion diagram		
application	index drive L force sector i_force program i/o profile captured pos		
setup	state controller moter reference basic settings		
firmware	version update		

MOTOR TYPE

The connected motor type of LINAX[®] and ELAX[®] series will be recognized and shown automatically.

I STOP

Continuous current limitation in standstill.

I RUN

Continuous current limitation while moving.

NUMBER OF POLE PAIRS

LINAX[®] Lx and ELAX[®] Ex linear motor pole pairs = 1

INC PER REVOLUTION

Number of encoder increments per revolution.

Linear motor axis:

Lxc 44F04, INC PER REVOL = 12'000 other LINAX® products Lxc, Lxe, Lxu, Lxs, INC PER REVOL = 24'000 ELAX®, INC PER REVOL =14'171

PHASE DIRECTION

Direction of phase control U, V, W or V, W, U, depending on motor type. LINAX[®] / ELAX[®] linear motor, PHASE DIR = 0

PHASE OFFSET

Correction of electrical angle, in accordance with the orientation of the coil to the magnet. Value for all LINAX[®] and ELAX[®] products and the most of rotary motors PHASE OFFSET = 0

moving precisely, within tight space

9.17.2 Motor ROTAX®

MOTOR TYPE

The connected motor type of ROTAX[®] series will be recognized and shown automatically.

I STOP

Continuous current limitation in standstill.

I RUN

Continuous current limitation while moving.

NUMBER OF POLE PAIRS

Number of pole pairs of AC / DC / EC brushless servo motors. For DC brush-type servo motors, set POLE PAIRS to 0.

INC PER REVOLUTION

Number of encoder increments per revolution by AC / DC / EC brushless servo motors. Not used for DC brush-type servo motors.

PHASE DIRECTION

Direction of phase control U, V, W or V, W, U, depending on motor type. Can be detected with command PHDD. With DC brush-type servo motors: PHASE DIR = 0, if motor shaft turns clockwise with direct DC-supply voltage. PHASE DIR = 1, if motor shaft turns counter clockwise with direct DC-supply voltage.

PHASE OFFSET

Correction of electrical angle, in accordance with the orientation of the coil to the magnet. Value for the most of rotary motors PHASE OFFSET = 0

ROTOR INERTIA

Rotor moment of inertia of the motor, with factor 10^9 .

TORQUE CONST

Torque constant of the motor, with factor 10⁶.

INDUCTANCE

Phase to phase inductance of the motor.

RESISTANCE

Phase to phase resistance of the motor.

9.17.3 Third Party Motors

THIRD PARTY MOTOR

Motors that are sold by Jenny Science, are available in the database and can be selected.

For parameterization of rotary servo motors, refer to the document XENAX® Servocontroller/General files for XENAX® Xvi/PARAMETER OF ROTATIVE.zip on www.jennyscience.ch/en/download.

I NOM (FOR I2T)

Acceptable thermic continuous current. Used for I²T monitoring and current limitation in standstill.

I PEAK

Continuous current limitation while moving.

NUMBER OF POLE PAIRS

Number of pole pairs of AC / DC / EC brushless servo motors. For DC brush-type servo motors, set POLE PAIRS to 0.

INC PER REVOLOLUTION

Number of encoder increments per revolution by AC / DC / EC brushless servo motors. Not used for DC brush-type servo motors.

PHASE DIRECTION

Direction of phase control U, V, W or V, W, U, depending on motor type. Can be detected with command PHDD. With DC brush-type servo motors: PHASE DIR = 0, if motor shaft turns clockwise with direct DC-supply voltage. PHASE DIR = 1, if motor shaft turns counter clockwise with direct DC-supply voltage.

PHASE OFFSET

Correction of electrical angle, in accordance with the orientation of the coil to the magnet. Value for the most of rotary motors PHASE OFFSET = 0

ROTOR INERTIA

Rotor moment of inertia of the motor, with factor 10⁹.

TORQUE CONST

Torque constant of the motor, with factor 10⁶.

INDUCTANCE

Phase to phase inductance of the motor.

RESISTANCE

Phase to phase resistance of the motor.

9.17.4 Position Overflow

For ROTAX[®] servo motor types and Third Party Rotative Motors, which are operated e.g. as rotary tables always in the same direction of rotation, it can occur that the encoder position reaches very high positive or negative values

In order to ensure that the position can be continuously incremented in positive or negative direction, a controlled overflow mechanism is integrated in XENAX[®] servo controller.

> The maximum position values correspond to $2^{31}-1 = 2'147'483'647$ inc in positive direction and $-2^{31}=-2'147'483'648$ inc in negative direction. The overflow takes place between these two values.

> > 2'147'483'647 <> -2'147'483'648

Example: positive overflow

Actual Position: 2'147'483'646 inc Relative Motion: 10 inc

Motion: Start position: 2'147'483'646 inc 2'147'483'647 inc -2'147'483'648 inc -2'147'483'647 inc

Target position: -2'147'483'640 inc

Example: negative overflow

...

...

Actual Position: -2'147'483'648 inc Relative Motion: -20 inc

Motion: Start position: -2'147'483'648 inc 2'147'483'647 inc 2'147'483'646 inc

Target position: 2'147'483'628 inc

9.18 Reference

E

9.18.1 Reference LINAX®

9.18.1.1 Reference Absolute, According Reference Marks

REFERENCE Selection

Default, reference over two reference marks on the measuring scale with calculation of the absolute position. This position refers to the mechanical zero point of the LINAX® linear motor axes.

		WebMotion	ЈЕММУ SCI	E N(): E
Qui	ek nt			
move axis	by click by command line by Forceteq® motion diagram	\bigcap	 ON OF	FINIT 2
application	Index drive i_force sector i_force program l/o profite captured pos			10000
	state controller motor reference basic settings			
firmware	version update			~

DIRECTION

Enter start direction of the reference travel direction:

POSITIVE (DEFAULT) =	Reference direction up. Away, from absolute zero point, in positive direction.
NEGATIVE =	Reference direction down, direction towards absolute zero point.
GANTRY => POS =	Motors in same direction up, in positive direction (away from zero point).
GANTRY => NEG =	Motors in same direction, negative direction (towards zero point).
GANTRY<=>POS =	Motors in opposite direction up.
GANTRY<=>NEG =	Motors in opposite direction down.

9.18.2 Reference ELAX®

ELAX[®] does not possess Z-marks on the measuring scale. The absolute position is determined by driving on a mechanical limit. The direction of the reference can be positive or negative (refer to ASCII command "DRHR")

9.18.2.1 Reference with Internal Limit

9.18.2.2 Reference with External Limit

If there are no externally mounted limit stops ("MLPN" = 0 and "MLPP" = 0), the reference will be completed by the internal mechanical limits of ELAX® itself. ASCII command "MLPN"= Mechanical Limit Position Negative ASCII command "MLPP"= Mechanical Limit Position Positive

Negative Reference (DRHR = 1)

The slide drives in negative direction until the mechanical limit is recognized. This position will then be set to <-1mm> as per definition. In order to complete the reference, the slide moves then to the absolute position 0. ASCII command "DRHR"= Direction REF

Positive Reference (DRHR = 0)

The slide drives in positive direction until the mechanical limit is recognized. If the calibration of the internal mechanical limit was completed (MLC, Mechanical Limit Calibration)positively, the current position is set to the value **"DMLPP"**. If no calibration of the internal mechanical limit was completed positively **("DMLPP" = 0)**, the current position is set to <stroke ELAX + 1mm> as per definition. In order to complete the reference, the slide moves then to the absolute position <stroke ELAX + 1mm>.

If there are externally mounted limit stops (MLPN ≠ 0 or MLPP ≠ 0), the reference (REF) will be completed to one of the externally mounted limit stops. ASCII command "MLPN"= Mechanical Limit Position Negative ASCII command "MLPP"= Mechanical Limit Position Positive

Negative Reference

The slide drives in negative direction until the mechanical limit is recognized. This position will then be set to the value of **"MLPN"**. In order to complete the reference, the slide drives to the absolute position <MLPN +1mm>.

Positive Reference

The slide drives in positive direction until the mechanical limit is recognized. This position will then be set to the value of **"MLPP".** In order to complete the reference, the slide drives to the absolute position <MLPP - 1mm>.

Important Note:

The position of an externally mounted mechanical limit has to be accurate. If the entered position of the externally mounted limit stop is wrong, the alignment of the coils to the magnets cannot be completed and the motor won't be capable to drive. If the ELAX[®] slide is driven to the internal negative limit position, the slide is positioned at <-1mm> as per definition. The position of an externally mounted limit stop has to be indicated in relation to <-1mm>

ENCODER IS IN ABSOLUTE POSITION MODE WHEN Z-MARK

REF DIRECTION

CLOCKWISE

REF SPEED [inc/s]

0-250000

20000

REF INPUT

1

Z-MARK DIR

COUNTER CLOCKWISE

Z-MARK SPEED [inc/s]

0-100000

500

CLEAR OUTPUTS

For ROTAX[®] and third party motors only, for LINAX[®] or ELAX[®] please use directly command ">REF".

CLOCKWISE = clockwise **COUNTER CLOCKWISE** = counter clockwise

REF DIR

Defines start direction for searching the external REF sensors 1 = CLOCKWISE, 2 = COUNTER CLOCKWISE

REF SPEED

Defines speed to search the external REF sensor. If no home sensor exists, then set this value to 0.

REF INPUT

REF sensor external, input number (NONE or 1-4).

Z-MARK DIR

Defines start direction for searching the Z-mark on encoder 1 = CLOCKWISE, 2 = COUNTERCLOCKWISE. Or 3 = ON SHORTEST WAY (shortest way, only possible at ROTAX[®] Rxvp).

Z-MARK SPEED

Speed to search the Z-mark. If no Z mark (Reference mark) exists, then set this value to 0.

CLEAR OUPTPUTS

Set all outputs to OFF after reference.

Note for ROTAX[®] Rxhq:

Due to the absolute position, the ROTAX[®] Rxhq is immediately ready for operation after power-on, no reference drive is necessary.

For this purpose, the Z-MARK DIR must be set to 0 and the REF INPUT to NONE.

The position of the encoder immediately after startup always has a value between 0 and 119'999Inc. E.g. in case of a mechanical stop the movable range of the encoder changes depending on the range (between 0 and mechanical stop in positive direction or between 0 and mechanical stop in negative direction) in which the motor is starting up.

9.18.3 Reference ROTAX[®] und Third Party Motors

9.18.4 Reference to Mechanical Stop

REFERENCE LIMIT STOP	T
CREEP DIR POSITIVE	T
CREEP SPEED [inc/s] 50	0-250000 20000
CURRENT LIMIT x10 [mA]	10-600 300
REF WINDOW [inc]	0-1000 0

Selection REFERENCE LIMIT STOP

After the ordinary reference of a LINAX[®] or ELAX[®], it is possible drive to a mechanical stop.

Important: This function is optional and has no influence to the absolute positioning counter.

CREEP DIR

POSITIVE (Travel direction positive) NEGATIVE (Travel direction negative)

> **CREEP SPEED** Speed to mechanical stop [Inc/s].

CURRENT LIMIT

Nominal motor current [x10mA] during reference Power F = motor current x force constant

REF WINDOW

Maximal allowed variation compared to last REF position [Inc].

REF WINDOW = 0, testing off Output Function REF = 1

REF WINDOW = 1, testing on

Variations within allowed tolerance (REF Window): Output function REF = 1, current REF position will be new reference position.

Variations out of allowed tolerance: Output function REF = 0, The subsequent reference will be the new reference position.

9.18.5 Correction Table for LINAX[®] / ELAX[®]

Depending on the application's construction in which a LINAX[®] or ELAX[®] linear motor axis is used, it is possible that the encoder position does not correspond to the actual physical position of the linear motor slide (e.g. in cross table or for high cantilevered applications with leverage effect).

To a certain degree, the XENAX[®] servo controller offers the possibility to correlate the encoder position with the actual position. The correction table in WebMotion[®] offers 51 entries in which the physical position can be entered in fixed distances to the encoder position. The physical position can be measured with an interferometer.

The range for the way can be freely selected. Furthermore, the starting point and the distances between the entries of the table can be defined. If for example the range 0-100'000 increments shall be corrected, the starting position is 0inc and the distance for the 50 remaining table entries is 2'000 inc (100'000 / 50).

The correction values for the table are determined as follows: If the correction table is deactivated, all positions that were entered in the table are being driven to (example above: 0inc, 2'000inc, 4'000inc, ..., 100'000inc). At each position, the actual physical position has to be measured and entered in the correction table. When activating the correction table, all driving commands refer to the actual physical position and no longer to the encoder position of the LINAX® or ELAX® linear motor axes.

Limitations

- Correction table is not supported in case of rotary motors
- Correction table is not supported with communication over Real time Bus module (for example EtherCAT)
- This correction table runs with following commands and functions only: >G, >GP, >GW, >IX, >PRF, >RR, >RW, >TP
With the navigation setup/reference in case of LINAX[®] or ELAX[®]

CORRECTIO	(N TABLE	on off init		INIT	Initialize value =	e correction table, physical position encoder value
POS START (ii DIST POINTS	nc]	0		OFF	Correct encode	ion not active, moving commands refer to r position value
		UES		ON	Correct to phys	ion table active, moving commands refer ical position value
0 10000		0000		POS ST/	ART	Startposition of correction table.
20000 30000	20			DIST PC	DINTS	Distance between data entries in correction table
40000 50000 60000	40	0000 0000 0000 ~		Physica interfer If you e interfer	l absolute ometer. nter a G8 ometer r	e Position, measured with laser 3000 by command, and the laser reads the physical position 8011,
Encoder Position (automatically generated from POS SSTART			take it c	over to th	ne table.	
and DIS POI	NTS)					

Notes to correction table:

- For the positions outside of the correction table, the correction of the first respectively the last entry in the correction table holds valid. For example, the last entry is "ENC:100'000 -> PHYSICAL 100'017", so for the encoder position of 110'000 the physical value of 110'017 is considered.
- The position values between the table entries are interpolated.
- The correction table is saved in the application data of the XENAX[®] servo controller.
- After a reset of the XENAX[®] servo controller (command "RES"), the correction table will be initialized and deactivated (physical position = encoder position).
- During the measurement of the physical position values, the correction table has to be deactivated.

Input the correction values with WebMotion®:

ASCII Commands

>RES (Reset XENAX[®]) the correction table status is OFF, encoder values = physical values

>CTAB 0 (= OFF) >CTAB 1 (= ON) >CTAB 3 (= INIT)

>CTPS 0 (set correction table position start)
>CTDP 10000 (set correction table distance
points)

Setup individual correction table values >CTPO 20000 (preselect absolute encoder position) >CTVA 20003 (set correction table value with measured physical absolute position)

Important:

The reference point is also depending on the mechanical precision.

Hence this reference point must be always at the same position

We look for Reference REF 2 times.

	Application example for Reference:
>REF	Absolute position is calculated
	anywhere on the linear motor stroke
>G0	Go to absolute position 0
>REF	Absolute position is calculated next to
	the 0 point
	This is repeatable at the same position.
	Calle all the maritizer O

>G0 Go to absolute position 0
 → Now the Linear motor axis is ready

Remark: The position (WebMotion®/ TP "Tell Position") is the physical absolute position The POSITION Value is blinking red/white when the correction table is in use.

Influence of Temperature on Measuring System

Besides the position deviation, which can be corrected with the correction table, the temperature influence on the measuring system has to be considered, too. The deviation due to temperature can't be corrected in the correction table and is about 8.5µm per degree Celsius and meter for the optical measuring system. The optical measuring system

Please refer to data sheet of the according motor.

Examples:

1000mm optical glass scale: per 1° Celsius 8.5μm deviation 230mm optical class scale: Per 1° Celsius 2μm deviation

9.19 Basic Settings

		() e	b Motion			ENNY	
Qui St.	ek Itt						
move axis	by click by command line by Forceteq® motion diagram						
application	index						
	sector i_force program						
setup	state controller motor reference basic settings						
firmware	version update						
	save open						

General basic settings

MODE Choose mode:

Standard 0

- Electronic Gear 1
- Stepper Control 2

INC PER PULSE

Inc. pro Pulse, MODE 2, Puls/Direction controlling.

SYNC RATIO Ratio of electronic gear

CARD IDENTIFIER

Master/Slave, CANopen, Powerlink Read form start-up key (2 x binary coded switch) or set manual if there is no start-up key.

IP ADDRESS

Ethernet TCP/IP Adresse

SUBNET MASK

Ethernet TCP/IP Subnetmask

9.20 Version

		(WebMotion		JENN	Y SI	: I E N() E
move axis						
	by Forceteq®					
anniantian						
аррісация	index drive i_force sector i_force program					
setup	state controller motor reference basic settings					
firmware	version update					

Overview of hardware and software versions of XENAX[®] and bus module.

XENAX®

Overview of firmware, WebMotion[®], hardware and MAC-address.

BUS-MODULE

Optional bus module with version indication and protocol type.

Mac-address issue with Profinet / Powerlink and EtherNet/IP

If the Mac-address is 0, the Card Identifier is missing. IP address issue with EtherNet/IP

9.21 Update Firmware / License

Loading new version of firmware and new WebMotion® to XENAX® or to bus module. Update of License. The matching software components and hardware platforms can be found in the release notes.

XENAX FW Xvi48V8

Update of firmware. After switching to the Update GUI, "FIRMWARE" can be selected in the dropdown menu. Then select the <*.mot> file by clicking on "from file" in the Explorer window. After installation and switching back to the WebMotion® interface ("Exit Update GUI") all functions are immediately available.

Recommended procedure of firmware download: - Save application

- Disconnect PLC-connector and bus module cable if possible.

- We recommend using a point-to-point connection from PC to XENAX[®], not via switch.

 After completion of firmware download reset servo controller with command "RES" (reset) in menu move axis / by command line

- Reload the application into WebMotion[®] and download it to servo controller.

XENAX WebMotion

Update from WebMotion[®]. After switching to the Update GUI, you can select "WEBMOTION" in the dropdown menu. Then select the <*.mot> file by clicking on "from file" in the Explorer window. After installation and switching back to the WebMotion[®] interface ("Exit Update GUI") all functions are immediately available.

XENAX License Code

Updating the license code Possible licenses: LINAX® Linear motor axis Force processes (Forceteq®) LINAX® and Force processes (Forceteq®)

BUS-MODULE Firmware

Update of Busmodul Firmware (Only available if a bus module is present). Select and load file (*.flash). It is recommended to load the corresponding EDS (electronic data sheet) file into the PLC. This is contained in the folder of the firmware.

Note:

Alternatively, the <u>JSC Ethernet Installer</u> can be used to update each Firmware on several XENAX[®] Servo controllers simultaneously.

9.21.1 Display the actual license code

The activated licenses are displayed, when the WebMotion® is starting.

Or under WebMotion[®] Start-> Operation -> firmware -> version

9.21.2 Subsequent license ordering

Firmware	V5.04
WebMotion	V6.02
Hardware	V1.00
MAC	AC-6B-AC-0F-A1-5E
Licenses	[LINAX, FORCE]

The MAC-address must be sent to Jenny Science for any subsequent license ordering, WebMotion® Start-> Operation -> firmware -> version

> Possible licenses: LINAX[®] Linear motor axis Force processes (Forceteq[®]) LINAX[®] and Force processes (Forceteq[®])

9.21.3 License activation

WebMotion [®] start		
	ОК	
	ок	
	ок	ELAX Ex80F20-2
	ок	Upload XENAX settings
Click on <i>firmware / update</i>		
	SYS	STEM CHECKED AND READY
	Actu	ally activated licenses: [UNAX_EORCE]

WebMotion[®] is starting new and display the new activated license.

By wrong license code introduction, "No Additional Licenses" would be displayed.

Actually activated licenses: [LINAX, FORCE] Enter new License Code -> firmware/update

Actually activated licenses: [NO ADDITIONAL LICENSES] Enter new License Code -> firmware/update

9.22 Save

		() e b M o tio		JEN	NY S	N ();	
Qui Sta	by click						
	run float sensing motion diagram index program i/o		to XENAX				
	profile state controller motor reference basic settings		to file				
firmware	version update						

Saves applications, which contain all from the client saved parameters, data and programs.

to XENAX

saves applications from WebMotion® to XENAX®.

to file

saves applications from WebMotion[®] to a file on PC/Laptop (Harddisk, Server).

to start-up key

Saves applications in the start-up key to load faster on other XENAX[®]. If "with Ethernet settings" is checked, the Ethernet settings are also saved on the Start-up Key and thus copied to another servo controller when loading.

9.23 Open

		WebMoti	on	JENNY	S C I E N(C E
Qu	ck irt				
			from File		
	state controller motor reference basic settings				
firmware	version update				

Opens applications, which contain all from the client saved parameters, data and programs.

from file

loads an existing application from a file to WebMotion[®]. Data will be stored into XENAX[®].

10 Master / Slave

With the master/slave configuration you can control up to 4 axes with one central program.

Typical applications are handlings modules (pick&place).

The master controls his slave's autonomously in stand-alone operation and can directly be controlled by a superior system over simple I/O signals.

10.1 Master/Slave Configuration

Master and slave devices are absolute identical standard XENAX[®] servo controllers.

The I²C bus is interconnected via short standard USB patch cables. Both plugs (USB-A) are usable.

No difference between input and output.

The parameter CI (Card Identifier) must be set on the involved devices as follows:

Device	CI	Remote ID	
Master	0	LOC (local)	programs
Slave 1	1	REM ID1	-
Slave 2	2	REM ID2	-
Slave 3	3	REM ID3	-

Important:

The program is running on the master servo controller.

On the slaves servo controller must be no programs loaded.

The start-up key functionality is disabled in master/slave configuration and must be disconnected.

\bigcirc

10.2 Programming example Pick&Place

Ē

X-Axis Master (LOC) Z-Axis Slave (REM ID1)

1					
2					
3					
4			LOCAL V		
5					
6					
7					
8					

Please note:

All indices and profiles have to be defined exclusively in the master device. After turning on the devices, indices and profiles will be automatically transferred to the slaves.

10.3 Timing Master / Slave

The program interpreter is triggered in 1ms intervals. The transmission of a command from the master to the slave takes an additional 0.45ms.

The measurement of time critical sequences is possible with the process timer functionality and the commands: "TIMER_START" und "TIMER_STOP". The process time can be read with the command TPT (Tell Process Timer).

11 Gantry Synchronized Mode

In the gantry mode there are two linear motor axes mounted with the same driving direction. Those two axes have to move synchronously. In this example these are the y-axes marked with the arrows.

When switching on the system, these two Y-axes have to be aligned in order to move without mechanical tension.

The alignment is automatically completed with the function "REFERENCE". For "REFERENCE" function for gantry systems you will need the following information:

The arrangement of the two linear motor axes

Is driving direction from the mechanical absolute zero point the same for both axes or in opposite direction

In which direction should the reference be completed (parameter DRHR)

The axis with which will be communicated by ASCII commands is the master. The slave has to be connected to the master via A-A cable.

The slave has to be assigned a CARD IDENTIFIER between 1 and 3. This can be done by WebMotion® under "setup / basic / CARD IDENTIFIER" or with ASCII command

 $CI \times (where \times = 1-3).$

The card identifier (CI) can also be assigned with a start-up key and an address from 1 to 3. When turning on the logic supply the next time, this CI number of the start-up key is set.

The master has to be assigned to the number 0 or a different Card identifier (CI) than its slave.

XENAX®	Parameter	Description
SLAVE	CI	Card Identifier
MASTER	DRHR	Direction of reference
		drive and arrangement
		LINAX [®] / ELAX [®] linear
		motor axes.
MASTER	GSID	Gantry Slave ID
		corresponds to CI Slave

The gantry mode is activated with these settings.

11.1 Activate Gantry Mode

Settings WebMotion® (settings only necessary on the XENAX® Master)

By selecting the "Gantry Offset Parameter", you can specify whether the position offset between the master and slave should be set automatically or manually.

If you set the "User Defined Master/Slave Offset" option to OFF, the offset is determined during referencing and its value becomes visible. If you select the "User Defined" setting, you can set the offset manually to correct the rectangularity of the gantry setup. This change is made directly in the slave and the rectangularity can then be checked using a dial gauge.

11.2 ASCII Commands for Gantry Synchronized Mode

Can also be triggered as INPUT FUNCTION in the master.

Reference, profile and indices can also be invoked in a program.

Command	Description
REF	Reference
GP / G	Go Position / Go direct Position
GW	Go Way
IX	Index
PRF	Start profile No. xx
PG	Program
EE*	Emergency Exit
EE1*	Emergency Exit 1
SM	Stop Motion

* EE and EE1 must only be parameterized in a Gantry Master

11.3 HW Limit-Switch in Gantry-Setup

If a limit switch is used in a gantry setup, it must be wired to both servo controllers (master and slave). Please note the different configuration with opposite zero position.

12 Forceteq[®] Force Measurement Technology

12.1 Forceteq[®] basic current based with self calibrated motor

The Forceteq[®] basic measurement technology is completely integrated in the XENAX[®] Xvi servo controller. This allows force-monitored control of all Jenny Science linear and rotary motor axes. The force is measured during the production process using the patented Forceteq[®] measurement technology, no external load cell is required. This allows you to acquire and record quality-relevant force-distance diagrams for all movements. Assembly operations can be monitored "in-process". Errors and discrepancies are detected immediately. This means better quality and higher throughput. Additional checking stations are no longer necessary.

I_FORCE 1600

[=A] 1400

- For Standalone Operation

J

- Up to 10 force sectors programm able with WebMotion®

The individual axis types have different resolution and accuracy of the force and the measurable minimally measurable force.

Linear-Motor	Force Constant	Minimally Measurable Force	Resolution
LINAX [®] Lxc F08	1N ~ 32 * 10 mA	0.5 N	0.25 N
LINAX [®] Lxc F10	1N ~ 28 * 10 mA	0.5 N	0.25 N
ELAX [®] Ex F20	1N ~ 12 * 10 mA	0.5 N	0.25 N
LINAX [®] Lxc F40	1N ~ 11 * 10 mA	1.0 N	0.5 N
LINAX [®] Lxu F60	1N ~ 10 * 10 mA	10.0 N	5.0 N

Rotativ-Motor	Torque Constant	Minimally Measurable Torque	Resolution	
ROTAX [®] Rxhq 110-50T1.5	10mNm ~ 2.5 * 10 mA	60 mNm	30 mNm	
ROTAX [®] Rxhq 50-12T0.3	10mNm ~ 8 * 10 mA	20 mNm	10 mNm	
ROTAX [®] Rxvp 28-6T0.04	10mNm ~ 23 * 10mA	6 mNm	3 mNm	

E

12.2 Forceteq[®] basic via Realtime Bus

The force values are transmitted as process data objects (PDO) cyclically according to the bus cycle time

12.2.1 CANopen over Ethernet

Parameter	Objekt (PDO)	Description
Position Actual [Inc]	6064h	Position actual
I_Force Actual [mA]	2005h	Force-equivalent current actual
Limit I_Force [x10mA]	6073h	Limitation of force-equivalent current
Process Status Register	2006h Bit 15	Limitation of force-equivalent current reached

12.2.2 Ethernet/IP

Parameter	Class	Instanz	Id	Description
PositionActual [Inc]	0x66	0x1	0x24	Position actual
IForceActual [mA]	0x64	0x1	0x5	Force-equivalent current actual
LimitIForce [x10mA]	0x66	0x1	0x33	Limitation of force-equivalent current
ProcessStatusRegister	0x64	0x1	Ox6 Bit15	Limitation of force-equivalent current reached

12.2.3 Profinet

Parameter	PROFIdrive Telegram 9	I/O Data Number	Description
XIST_A [Inc]	Standard	4&5	Position actual
I_Force Actual [mA]	Supplementary Data 4	2&3	Force-equivalent current actual
	Data 5	1&2	
Limit I_Force [x10mA]	Supplementary Data 4 Data 5	1 1	Limitation of force-equivalent current
Process Status Register	Supplementary Data 4 Data 5	6&7 Bit 15 5&6 Bit 15	Limitation of force-equivalent current reached

friction forces of the iron core LINAX[®] and ELAX[®] linear motor axes and the ROTAX[®] rotary axes from Jenny Science can be detected. This is how it becomes possible to limit, monitor and control forces in processes.

> START: Determining the beginning position of calibration process in increments.

END: Determining the ending position of calibration process in increments.

In order to increase the accuracy of the detected forces at temperature variations, the temperature drift of the detection is continuously compensated at disabled power stage. The compensation also takes place before each start of a "force Calibration".

The current value "I_Force" is proportional to the force. Following graph shows corresponding relations for the different linear motor types.

12.3 Forceteq[®] basic via XENAX[®]

12.3.1 I_Force Calibration

12.3.2 I_Force Limitation

LINAX®	Force Constant	Minimal	Resolution	I_FORCE LIMITATION
Linear Motor Axis		detectable force		
Lxc F04	50 * 10mA ~ 1N	0.5N	0.25N	FORCE CONSTANT
Lxc F08	32 * 10mA ~ 1N	0.5N	0.25N	12 x 10mA ~ 1N
Lxc F10	28 * 10mA ~ 1N	0.5N	0.25N	
Lxc F40	11 * 10mA ~ 1N	1N	0.5N	
Lxe F40	11 * 10mA ~ 1N	10N	5N	I_FORCE x 10mA 48
Lxu/Lxs F60	10 * 10mA ~ 1N	10N	5N	COMMAND
ELAX®	Force Constant	Minimal	Resolution	
Linear Motor Slide		detectable force		
Ex F20	12 * 10mA ~ 1N	0.5N	0.25N	Stop Motion
ROTAX®	Torque Constant	Messbares	Resolution	
Rotary Motor Axis		Min.moment		
Rxhq 110-50T1.5	2.5 * 10mA ~ 0.01Nm	0.06Nm	0.03Nm	
	0 * 10 1 - 0 011	0.020	0.01 Nime	
Rxhq 50-1210.3	8 * 10mA ~ 0.01Nm	0.02NM	0.01NM	

Example:

A compression die should apply no more than 4N force on an object. Force Limitation with "LIMIT I-FORCE"

e.g.. ELAX[®] force constant: 12 x 10mA ~ 1 N

48 x 10mA ~ 4 N

12.3.3 I_Force Monitoring

12.3.3.1 Diagram I_Force

In the menu "Diag I_Force" the way/force diagram can be recorded by which the force progression through the sectors can be verified.

12.3.3.2 Sector I_Force

In the WebMotion[®] program menu "sector i-force" up to 10 different force sectors can be defined.

Example:

Once an object is touched the force progression shall be examined in a sector of 150 to 170 Increments. When entering the force sector ("ENTRY") the force should be between 3 and 4N. When exiting the sector ("EXIT"), the force should have reached 4N. These force specifications are defined with the in the force sector incoming and exiting sector boundaries.

Force Specification Examples:

1) Force curve has to pass through sector from the left/bottom side to right/top side.

2) Force curve has to pass through sector from the bottom to the top side.

 Force curve has to reach the sector and can pass through incoming and exiting force boundaries multiple times.

Note:

If there are defined incoming and exiting force boundaries, it is absolutely necessary that the force curve passes through them. If there are no incoming force boundaries defined, the force curve has to begin somewhere within the force sector. If there are no exiting force boundaries defined, the force curve has to end within the force sector.

12.3.4 I_Force Control

Ē

12.3.4.1 Program with I_Force Control Commands

4	SET SECTOR OFFSET	0					
5	SELECT SECTORS	00000	0000				
6					LOCAL V		
7							
~							
8	DRIVE I_FORCE						
0							
9		TIME					
10		Invieo					
10		2000					
11							
12	SELECT SECTORS	00000	0111				
		x10 [m					
13		150					
		TIMEO					
14		2000					
		TIME					
15		50					
		LINE					
16	JUMP IF L FORCE SECT FAULT						

In the WebMotion[®] menu "program" the different force functions of I_FORCE CALIBRATION, I_FORCE LIMITATION and I_FORCE MONITORING can be combined and defined with the use of the according commands.

The command can be found in chapter 9.12.1 Program commands

12.3.4.2 Drive I_Force

	10000	50000	60		
	10000	3000	24		
NEW 1	•				
FORCE	CONSTANT: 12 x 10mA ~				

DRIVE I_FORCE is driving with force consisting of acceleration (ACC), speed (SPEED), current (I_FORCE) and driving direction (DIRECTION).

After defining and saving the above mentioned parameters, DRIVE I_FORCE can be included in a program.

Up to 10 DRIVE I_FORCE can be defined.

12.3.5 Sector Offset for Touching Position

Typically an object is first touched. All following functions then relate to this touching position. Depending on the size tolerance of the objects, this touching position differs from object to object.

The touching position can very simply be detected with "Drive I_Force" (by using little force). The command "TPSO" (Take IST-Position as Sector Offset) will take this touching position as sector offset for all functions that follow.

In order to determine the value "Sector I_Force Start" and "Sector I_Force End" it is simplest to record the force curve and to calculate the distance to touching position (absolute position – Sector Offset).

"Sector I_Force Start", "Sector I_Force End", "Wait for Distance greater/less" and "Jump if Distance greater/less" are distances relative to the touching position (sector offset).

With "SSO" Set Sector Offset = 0 the distances correspond to the absolute positions.

A force sensor consisting of a little mounting plate, ceramic and strain gauge elements glued on the top shall be tested upon its functionality.

The force sensor measures the external force applied to the small ball (upper left corner in picture).

With the ELAX[®] linear motor slide and the XENAX[®] servo controller the ball shall be touched and the touching position detected. The touching position is the offset of the actual force curve measurement. This offset compensates the height tolerances of the different measuring objects.

Air gap

Rubber buffer

After touching position, the force curve of the ceramic plate shall be recorded.

After an air gap of only 200 μ m, the ceramic plate hits the rubber buffer. At this position the force increases steeper as the rubber buffer acts against the ceramic plate. The maximal force is limited to approximately 12N ~150 x 10mA. Of interest is the increase in force while the plate is bending and the position where the force curve is making a kink upwards when hitting the rubber buffer. For this example, five different sectors are defined on the force-/way curve, which have to be passed correctly.

Hereinafter you can find the according program example 1) as stand-alone version programmed and stored in the XENAX[®] servo controller 2) as Ascii command set controlled via a superior controller.

12.3.6 Application Example

12.3.6.1 Application as program in XENAX[®]

Input / Output Interface Definition

INPUT FUNCTIONS:

- Input 1 = Program 1, Referencing and drive to position 0 Input 2 = Program 2, Force Calibration of ELAX[®] linear motor slide
 - Input 3 = Program 3, Entire test process including analysis

OUTPUT "STATUS":

- Output 1 =
 - Output 1 = No touching position found \rightarrow No test object available Output 2 = Error of test object
 - Output 5 =

INDEX, DRIVE I_FORCE und SECTORS

Drive INDEX 1 to Olnc. absolute (1Inc = 1µm)

Drive INDEX 2 to 30'000Inc. absolut

Drive with Force, Force on 0.5N in order to recognize touching position. (1N = 12 x 10mA)

In order to determine the following sector parameters, we recommend the following approach: 1. Drive towards test object (Drive I_Force) with little force (e.g. 0.5-1.0N) and remember the touching position (offset corresponds to the position at arrowhead)

 Record Force/Way diagram of a correct test object. Then place the testing sectors according to the force curve and retrieve parameters. For Sector I_Force Start/End the offset has to be subtracted of the touching position.

******* Index 1****** Acc x1000 = 1000 Speed = 100000 Dist = 0 AbsRel = 1 ******* Index 2****** Acc x1000 = 1000 Speed = 100000 Dist = 30000 AbsRel = 1

Test object OK

******* Sector I_Force 1 ******************* Sector IForce Start = 31 Sector IForce End = 58 IForce Low x10mA = 25 IForce High x10mA = 35 Sector Transit Config = 12480

JENNY SCIEN(Ç

moving precisely, within tight space

No "EXIT" Ending position has to be in sector.

Referencing and driving to position 0, INDEX 1

Calibration of linear motor slide by recording all forces (cogging, friction, weight etc.)

Entire testing process with analysis of result

Reset output status display

Initializing sector offset to 0 (not mandatory) Selected sectors 0 (not mandatory)

Drive to position 0, all the way to the top Drive to position 30000, fast driving to pre-position Drive to touching position with little force (0.5N) Short wait time, in case the force has been exceeded while accelerating (when using little forces). Wait until LIMIT I_FORCE is reached. If there is no touching position during timeout frame, jump to error "no object in place", output 1 ON Short wait time in order to stabilize touching position Takes touching position as offset for the following tests Selecting sectors 1-5

Change I_FORCE forcurrent Drive I_Force from, 6 to 150 = 12.5N Timeout in case that force is not reached, then no output no 5. Short wait time after force reaches limit to "stabilize".

Drive I_Force ends Testing the selected sectors, in case of an error, jump to error output 5 ON, meaning testing object OK

Sector IForce Start = 162 Sector IForce End = 182 IForce Low x10mA = 139 IForce High x10mA = 141 Sector Transit Config = 8320

******* Sector I Force 5 ****************

Sector IForce Start = 170 Sector IForce End = 185 IForce Low x10mA = 148 IForce High x10mA = 152 Sector Transit Config = 12288

******* Program 1 ****** Line 1 REFERENCE Line 2 INDEX 1, DEVICE = LOCAL COMPLETION = 100%

****** Program 2 ***** Line 1 FORCE CALIBRATION POSITION START = 0 POSITION END = 50000

******* Program 3 ******
Line 1 CLEAR OUTPUT 1 M/SLAVE DEVICE = LOCAL
Line 2 CLEAR OUTPUT 2 M/SLAVE DEVICE = LOCAL
Line 3 CLEAR OUTPUT 5 M/SLAVE DEVICE = LOCAL
Line 4 SET SECTOR OFFSET POSITION = 0
Line 5 SELECT SECTORS 0
Line 6 INDEX 1 LOCAL COMPLETION = 100%
Line 7 INDEX 2 LOCAL COMPLETION = 100%

Line 8 DRIVE I_FORCE 1 Line 9 WAIT TIME TIME [ms] = 50

Line 10 WAIT LIMIT I_FORCE TIMEOUT = 2000ms LINE = 23

Line 11 WAIT TIME TIME [ms] = 20 Line 12 TAKE POS AS SECTOR OFFSET Line 13 SELECT SECTORS 11111 Line 14 CHANGE LIMIT I_FORCE I_FORCE = 150 Line 15 WAIT LIMIT I_FORCE TIMEOUT = 2000ms LINE = 26 Line 16 WAIT TIME TIME [ms] = 20 Line 17 DRIVE I_FORCE END Line 18 JUMP IF I_FORCE SECT FAULT LINE = 25 Line 19 SET OUTPUT 5 M/SLAVE DEVICE = LOCAL Line 20 SELECT SECTORS 0 Line 21 INDEX 1 LOCAL COMPLETION = 100% Line 22 PROGRAM END Line 23 SET OUTPUT 1 M/SLAVE DEVICE = LOCAL Line 24 GOTO LINE 26 Line 25 SET OUTPUT 2 M/SLAVE DEVICE = LOCAL Line 26 DRIVE I_FORCE END Line 27 INDEX 1 = LOCAL COMPLETION = 100%

Download the determined sector parameters into

Below you find the description for sector 1. Sectors 2-

In ordert o be able to see those parameters in the webbrowser under "sector i_force", the site has to be re-loaded. This is how the values

are transferred from the XENAX® to the Webbrowser.

Calculate STC parameter with Win Calc (view of

11..8

not used

0

0000

Decimal value can be negative if highest Bit, Entry 4 is

Bit 15..12

Entry

4 3 **2 1**

0011

XENAX[®] servo controller. There are 5 sectors all in all.

Pre-selection of sector number

Sector Transition Configuration

7..4

Exit

4 3 2 1

1100

Sector I Force Start [Inc]

Sector I_Force End [Inc]

IFL I Force Low [x10mA] IFL I_Force High [x10mA]

programmer)

set.

3..0

not used

0

0000

5 are structured in the same way.

12.3.6.2 Force Process with ASCII Commands

Parameter Sector 1 laden >NSFC 1 >SIFS 31 >SIFE 58 >IFL 25 >IFH 35 >STC 12480

Calculator				
= Progra	mmer			
		11 (0000 110	0000 00
HEX 30C0				
DEC 12'480				
OCT 30 300				
BIN 0011 000	0 1100 0000			
		QWORD		MS
\Rightarrow Bitwise \vee	💥 Bit Shift 🗸	/		
		~	CF	

Program	
Referencing Axis	>REF
Drive to position 0	>G 0
Delete old calibration values (optional)	>FC 0
Remove test objects, axis has to drive without obstacles.	>FC 50000
Execute Force Calibration from 0 until 50000 Inc (one-time)	
Force Calibration test, if slider is floating / in balance (optional)	>FCT1
Back to position control (optional)	>FCT0
Sector Offset is set to 0 (optional)	>SSO 0
Selection of active sectors of 0. Only to be activated before test drive,	
so the analysis SIFF is correct.	>SSEC 0
Drive to position 30'000 Inc	>G 30000
Reduce Deviation Position, so the internal calculated desired position does not deviate too much from the actual position of Drive I_Force. Otherwise the slide would jump in position when I_Force is increased. Only needed when there are long timeouts after Drive I_Force is reached.	>DP100
Drive L Force 1 moves to touching position	
Take Desition as Sector Offset (touching position)	
	>1930
Activate sectors 1-5	>55EC11111
Change Limit I_FORCE to 150 X 10mA	>CLIF 150
verity tell process status registery, Bit 5 "IN FORCE"	>142K
Stop Drive I_Force with Stop Motion	>SM
Shows faulting sectors. Response should be 0	>SIFF?

>DP1000

>G 0

does not deviate too much from the actual position of Drive I Force. Otherwise the slide would jump in position when I_Force is increased. Only needed when there are long timeouts after Drive I_Force is reached. Drive I_Force 1 moves to touching position

Shows faulting sectors. Response should be 0 Reset Deviation Position to old value Drive to position 0

13 Parameterization rotative third-party motor

The servo controller XENAX® Xvi75V8 allows motion control for rotative AC / DC / EC servomotors. With brush-type DC servomotors an incremental encoder is necessary. With brushless AC / EC servomotors 3 phase commutation signals (hall) and an incremental encoder are necessary.

The motor configuration must be set to "Thirdparty" via DIP switch. (For details, see chapter "5 Configuration Motor Type Jenny Science / Motor customer specific")

As the customer, you can do the commissioning yourself with the help of this guide. Alternatively, Jenny Science AG offers this as a service. You will receive a compatible cable for your motor and the necessary parameterization. To take advantage of this service, please send us the motor.

Necessary parameters from datasheet

Motor parameters	Unit	Scale	Command
Nominal current (for calc. I ² T only)	[A]	*10 ²	IN
Torque current	[A]	*10 ²	IP
Number of pole pairs	[1]	-	POL
Encoder resolution (Edge = *4)	[1]	-	ENC
Phase direction	[1]	-	PHD
Phase offset	[°]	-	РНО
Rotor moment of inertia	[Kg*m ²]	*10 ⁹	MAMO
Torque constant	[Nm/A]	*10 ⁶	FCM
Phase - phase inductance	[μH]	-	LPH
Phase - phase resistance	[mΩ]	-	RPH

13.1 Motorparameter with WebMotion

THIRD PARTY MOTOR	NOT IN THE PARAMETER TABLE						
COMMAND		I NOM (FOR 12T) x10 [mA]	10-1800		0		
Decell commonde							
Recall commands							

Set motor type in setup / motor to "NOT IN THE PARAMETER TABLE" if it is not already in the list.

The motor parameterization can be done in menu *move axis / by command line* or *setup / motor*.

Parameter of friction (Default)

The default settings can be adopted unchanged.

Friction	Unit	Scale	Command	Default
Dynamical	[mN/m/s]	-	FFDY	10'000
Static	[mN]	-	FFST	0

Example Faulhaber Motor 4490 H 024B

Motor parameter	Datasheet	XENAX [®] conversion	Command Terminal
Nominal current	8.62A	8.62A *10 ²	IN862
	Thermic acceptable continuous		
	current		
Torque current	12A (selected)	12A*10 ²	IP1200
	Depends on the application. Limit		
	for acceleration and deceleration,		
	temporary active.	4	0014
Number of pole pairs	1	1	POL1
	For brush-type DC motor, set		
En en den noorduitien		4000	FNC4000
Encoder resolution	4000 INC/ REV	4000	EINC4000
(Edge = *4)	One revolution clockwise of motor shaft will increment		
	position counter by 4000Inc		
	positive.		
Phase direction	1	1	PHD1
	By enter PHDD in by command		
	line/terminal and then turn the		
	motor clockwise, it gets 0 or 1 as		
	response. With V3.46 or higher.		
	If you receive «?» the DIP-Switch		
	is still set to JSC-Motor or the Hall-		
	Signals are not available.		
Phase offset	0 °	0	PHO0
	Fort the most products set 0 º		
	Harmonic Drive: 330 º		
Rotor moment of inertia	130 gcm ²	0,000013 kgm ² *10 ⁹ = 13'000	MAM013000
Torque constant	23,83 mNm/A	0,02383 Nm/A *10 ⁶ = 23'830	FCM23830
Phase - phase inductance	76 μH	76 μΗ	LPH76
Phase - phase resistance	0.237 Ω	237 mΩ	RPH237

After parameterization, the servo controller needs to be rebooted and the WebMotion[®] browser has to be refreshed.

Afterwards, the motor can be controlled under: Move axis.

The motor parameters are an integral part of the application data and can be saved with the "save" button on the bottom of the WebMotion[®] interface.

save open		
POSITION 0	MOTOR ROTATIVE REFERENCE PENDING	

13.2 External load for state controller

Moment of inertia	Unit	Scale	Command
Inertia	[Kg*m ²]	*109	ML

If a gearbox is placed between the motor and the load, the external moment of inertia must be must be converted to the motor shaft accordingly. The transmission ratio must be squared must be weighted. For example, gear ratio = 20:1. The external moment of inertia must be reduced by 400.

Oscillations and overshoot can be optimised in the setup / state controller menu during operation using the following parameters:

Bandwidth of position controller GAIN POS Increasing: closed loop stronger, weightend on position. Decreasing: closed loop smoother, weightend on velocity.

13.3 Template parametersset for documentation

Тур:		

Motor	parameter	

Parameter	Value Datasheet	Unit	Scale	Command	Value to enter
					setup->motor
Nominal current		[A]	*10 ²	IN	
Torque current		[A]	*10 ²	IP	
Number of pole pairs		[1]	-	POL	
Increments / Revolution		[1]	-	ENC	
Phase direction		[1]	-	PHD	
Phase offset		[°]	-	PHO	
Rotor moment of inertia scaled		[Kg*m ²]	*109	MAMO	
Torque constanta scaled		[Nm/A]	*106	FCM	
Phase – phase inductance		[µH]	-	LPH	
Phase – phase resistance		[mΩ]	-	RPH	

State controller parameter

Parameter	Unit	Command	Default	Value to enter
Moment of inertia load scaled (INERTIA)	[Kg*m ²]	ML	0	
Bandwidth of position controller (GAIN POS)	[Hz]	BWP	50	
Bandwidth of current controller (GAIN CUR)	[Hz]	BWC	300	
Dynamic friction	[mN/m/s]	FFDY	10'000	
Static friction	[mN]	FFST	0	

14 Operating Status on 7-Segment Display

Description	Display
No firmware, operating	F
system is active	
Firmware active, servo	0
controller OFF	
Servo On, control loop	1
closed	
Error refer chapter 15Error	xx flashing
Handling)	
No power supply logic or	none
voltage on power supply	
logic >27VDC	

JENNY SCIEN (C

15 Error Handling

E

Errors are displayed on the XENAX® servo controller's 7-segment display by flashing a two digit number. With the command "TE" (Tell Error) they can be retrieved.

There are 3 different categories to differentiate:

Information	No 0-39	They do not change state of the servo controller. These are simple status indicators.
Warnings	No 40-49	They can trigger a stop of an active drive (e.g. driving in soft limit). However, the drive can then be continued without the need to switch off the output stage.
Errors	No 50-99	Always cause the output stage to switch off. The drive can only be continued after troubleshooting and error acknowledgement (Power Quit).

The first information/warning/error is always displayed first. A possible follow-up error won't be displayed. Each warning can overwrite information and each error can overwrite a warning or information. The error history can be retrieved with ASCII command "TEB".

15.1 Error Codes

F-Number	Description	Note
		Information
01 to 12	Waiting for input xx (Low od. High)	Keeps driving, if status has been reached or restart with HO, REF, SM, or PQ, PWC.
20	Command not allowed	Command is not allowed, if an external PLC is controlling the axis. The command priority of the overriding PLC can be deactivated if the user set the CANopen Mode of operation to 0 (CANopen Object 0x6060)
21	Force license missing	Calibration value are existing in motor, but there is no force license active
22	Program start interrupted	Program start is interrupted through input function "INTERRUPT PROGRAM"
23	Starting position of motion profile is not valid	Motion profile (ASCII command "PRF") can only be started if linear motor slide is positioned at or behind the starting position of the motion profile.
24	Index Paramater not valid	One or more parameters of the most previous selected index are not valid. Please check Acceleration (ASCII-command "AIX"), Speed (ASCII-command "SIX") and type (ASCII-command "TYIX") of index.
25	Bus module supervision disabled	Bus module is only intended for development purposes. Change bus module by Jenny Science.
26	Third party motor not configurated or DIP-switch setting wrong	For Jenny Science Motors (LINAX/ELAX/ROTAX): For all Jenny Science motors the DIP-switch has to be set on "LINAX/ELAX/ROTAX". For third party motors:
		Please make correct setting for the motor in WebMotion [®] under setup \rightarrow motor.
27	Swing Out Reduction Parameter inconsistency	A new calculation of the target trajectory for swing out reduction feature can only be initialized after a motor standstill -> Motor has to be at standstill for at least 1000ms so that a new set of parameters can be used.

30	Limit I Force reached	Force proportional motor current reached "Limit I_Force Value" (LIF). Motor current is limited to "Limit I_Force Value". A possible
32	I_Force Drift Compensation failed	Automatic I_Force Drift Compensation deviation drive was blocked or the compensation position could not be held steady for 150ms (e.g., due to vibration)
35	Gantry Master Salve Offset	Difference between automatically measured Gantry Master Slave Offset and pre-set value through PGMSO greater than 0.5mm
		Warnings
40	Driveway limitation due to soft limit values	Soft limits can be adjusted in WebMotion [®] in menu <i>"move axis / by click"</i> .
41	HW-Limit switch positive/negative active	HW-Limit switches are defined as input function "LIMIT SWITCH
42	Remote Controller Command rejected	One of the slave axes has an error or command for the slave could not be executed
43	Remote Controller not recognized	Master Slave configuration: Not all remote controllers defined in the master were recognized. The programs in the master have to be checked and the invalid remote controllers (Rem ID) have to be deleted.
44	Remote controller communication error	Check Master/Slave cable
45	AD Offset Error	correctly during the first drive. The linear motor has to be turned off while the output stage is turned on for at least 0.5s, so the AD-Offset can be retrieved correctly.
46	Cyclic data are not valid	Cyclic data specified via the bus modules are not valid. Check the Data S-Curve, Deviation position, Deviation Target position, I Force Max, Speed and Acceleration. Or PDO cycle time it not correct (only a multiple of 100us is valid).
47	Drive interrupted through SMU	The current drive was interrupted through the functional safety SS2 or SLS.
50		Errors
50	Position deviation is too large.	present motor position (encoder) is larger than the value defined as DP (deviation position) in Closed Loop setup.
52	The connected axis is not supported by this Servo Controller	The Servo Controller type you are using is not intended for the connected axis. Please use a compatible Servo Controller
54	Excessive rise of temperature or weak	Temperature rise too high/fast or the signal in the detector head of
	signal of LINAX [®] read head or Measuring system error of ROTAX [®]	the measuring system is too weak. Check your drive profile or clean glass scale on LINAX® linear motor.
		To ensure a correct start-up of the measuring system, the logic supply must be switched off for >10s when restarting.
55	Excessive rise of temperature	Temperature rise too high/fast.
59	JSC Motor does not fit application data	Connected JSC motor does not fit to the motor stored in application data (e.g. if a new JSC motor type is connected to the servo
60	Over-temperature power stage	Above 85° detected by separate temperature sensor on power stage.
61	Overvoltage of power supply	Power stage will be switched on. Power supply voltage or retarding energy from motor too high. Error occurs only if power stage is turned off. If power stage is turned on,
62	Ballast circuit too long active	please refer to error code 62. The ballast circuit is still more than 5 sec continuously active: Retarding energy too high or the power supply voltage is too high, the power
63	Over-temperature LINAX [®] /ELAX [®] /ROTAX [®]	stage will be switched off. Coil temperature above 80° in LINAX [®] / ELAX [®] linear motor or ROTAX [®]
64	Under voltage of power supply	rotative axis. Power stage will be switched off. Motor power supply voltage is too low. The power supply probably is not able to temporary deliver the demanded current.

65	Field adjustment on the magnet poles	The adjustment on the magnet pole was not successful, travel-plate of LINAX [®] / ELAX [®] or rotor of the third party motor is blocked or encoder / motor cable is broken. If at multi-axis applications, all servo controllers show error 65, then the D-sub encoder connector is
66	REF error	unplugged at one axis. Check the value payload (ML). Push the travel-plate by hand to a "free range"
67	Z-Mark distance failure	The measured distance of coded reference marks is not plausible.
68	Velocity too high during REF	Execute REF again. Could be consecutive fault of vector field adjustment on the magnet pole. Check the values I stop (IS) and I run
		(IR), maybe you have to increase these values.
69	Error HALL signal	Error in the consecutive order of HALL-signals, check Encoder cable.
70 71	Over-current power stage Power stage disabled	Potential short circuit or accidental ground in motor cable / coils. Release signal via PLC I/O Pin 9 not present (if activated) or power stage is disabled by Safe Motion Unit (SMU)
72	Speed is too high	The maximum speed is exceeded with the position setpoint. Possible cause: Target/actual-position adjustment forgotten after referencing. With 100nm measuring system = 9'000'000 inc/s = 0.9m/s
73	Over-temperature (I ² T)	I ² T calculation has detected over-temperature in the coil.
74	Electrical Angle Failure	The calculated electrical angle differs more than 50° from the estimated angle. Interrupt power and execute REF again. Cleaning the measuring scale might also be necessary. Check the values I stop (IS) and I run (IR), maybe you have to increase these values.
75	Reference pending	REF has to be executed before motor can move
76	Gantry Master Salve Offset	Difference between automatically measured Gantry Master Slave Offset and pre-set value through PGMSO greater than 0.5mm (Since firmware V5.08C Info 35)
77	communication error bus module/serial port	Depending on the operation mode, please check communication between servo controller and bus module or communication over serial interface (RS232/Ethernet). For communication over serial interface adjust Watchdog time if pecessary (command WD")
78	MAC-address not valid	The XENAX® MAC-address is not valid, please contact the Jenny Science AG company
79	Wrong checksum of calibration data	Force calibration or position of mechanical limit wrong. Restart "Force calibration" (ASCII: fcxx) or "mechanical limit calibration (ASCII: mlc).
80	Over-current PLC Output	One or more outputs of the PLC interface are overloaded In source configuration is Imax _{out} =100mA per channel, in sink Configuration is Imax _{out} =400mA per channel. Error can potentially occur due to inductive load without free- wheeling diode. In this case please either insert free-wheeling diode or select Sink/Source configuration with Imax _{out} =100mA per
82	Communication error I ² C bus to the motor	Chamer. Check encoder and extension cables. Connect cable shields on servo controller and motor with GND. Check Master / Slave cables
83	Internal FRAM error	Permanent data storage not possible ^{1.} . Possible source of error like in error display "L".
84	Start-up key error	Test with other key. Functionality in master-slave mode not supported.
85	I ² C switch error	Test without master-slave cables.
86	wrong checksum of application data	This error can appear after firmware download. Execute reset (RES)
87	Remote controller missing	Master Slave configuration: One or more remote controllers defined in master are missing. Check master programs for non-existent controllers (RemID) and delete them out of programs.
88	General I ² C error	Check the cable to the motor or the master-slave cable
92	3-Phase Output frequency > 599Hz	The output frequency of the 3-phase motor is over 599Hz. There are only movements allowed, which do not lead to an output frequency of >599Hz.

JENNY SCIENCE moving precisely, within tight space

93	Encoder plausibility	The encoder signals are not plausible. Possible causes: interruption of strands in the encoder cable, or encoder signals are led asymmetrically only. When encoder signals are led asymmetrically by intention for rotary motors, the encoder plausibility check can be turned off (refer to command ENCPD).
94 ("EE")	Restart caused by exception	XENAX [®] restarted due to software exception. Contact Jenny Science for details.
95	License missing	License error, a programmed function could not be started while the necessary license is missing.
96	Firmware Checksum Failure	Please try to reload the XENAX [®] firmware again. If the error persists, please contact Jenny Science.
97	Interlaced warnings	A new warning occurred before the state which led to the previous warning was cleared. Please make sure process is setup in a way where warnings cannot interlace (e.g. drive in soft limit and then drive in limit switch, before soft limit was left).
98	AD Interrupt Nesting	Fatal Error – Please restart the XENAX [®] servo controller.
99	Encoder cable unplugged/disconnected	Motor encoder cable was disconnected. Please connect encoder cable again and restart XENAX [®] .
"L"	Level I ² C Bus	The Level of the I ² C bus is not ok. Bus is blocked. Rotary motor connected to a XENAX [®] controller with linear axis setup (DIP Switch)? Or servo controller encoder connector defect. Test encoder: disconnect encoder; if XENAX [®] starts normally, connector is defect. If still not working, please contact Jenny Science for support.
"n"	Level I ² C Bus	I ² C bus response is "nak" (not acknowledged) No communication on I ² C bus, XENAX [®] internal or LINAX [®] /ELAX [®] /ROTAX [®] , temperature check is not possible.
¹) Intern	al hardware failure of the device, please	

contact Jenny Science

15.2 Notes for Error 50

Deviation POS ACT [inc]	, 0	25000	50000	75000	100000	2000
	, 0	250	500	750	1000	

Test POSITION Encoder counter

45000

POSITION

Status Display XENAX[®] WebMotion[®]

When the carriage slider of a linear motor axis or the rotary linear motor is being moved by hand, the position encoder counter has to adjust accordingly. If not check cable, signal encoder (check A/A* and B/B*).

If a shaft of a rotary motor is being turned clockwise (when looking at front shaft), the POSITION encoder counter has to count positive. When turned counter clockwise, the POSITION encoder counter has to count negative. Compare to chapter 4.2.6 Definition of Rotating Direction for Servo Motors.

Check parameters in setup

I STOP I RUN DEVIATION POS DEVIATION TARGET POS sufficient? sufficient? 2000 (Default) 50 (Default)

Check power supply unit

Is there enough voltage and enough power supply?

For LINAX[®] rotating field adjustment Lxc F04 at least 5,2A Lxc F08 at least 6,1A Lx F10 at least 5,5A Lx F40 at least 6.0A Lx F60 at least. 8.0A

For ELAX[®] rotating field adjustment Ex F20 at least 5,5A

When using LINAX[®] linear motor axes and ELAX[®] electric slides, we suggest executing the Quick Start function with automatic system-check.

moving precisely, within tight space

Test of brushless servo motors for hall signals encoder A/B and motor phase (wiring and colors).

Test if motor is running at low velocity

There is no common standardization for servo motor connectors. Jenny Science is happy to support you during the setup process.

With WebMotion®

Menu Motion: S-CURVE 20% AC (x1'000) 100 SPEED 10'000 Power Rep Reverse 10'000

Menu Terminal:

SCRV20 AC100000 SP10000 WA10000 PWC RR100

connection.

15.3 Arbitrary Display on 7-Segment

If there is an arbitrary sign e.g. "8." or if the display is

flickering, there are the following causes possible:

After turning on the logic supply (24V), typically a "0" appears on the display. The green LED of the RJ45 connector lights up green when using active Ethernet

For the logic supply the adapter should deliver 24V DC and at least 300mA. Provides the adapter 24V DC for the logic as well as the power, 5A are required. Measure logic supply (24VDC), change adapter if necessary.

DIP switch "LOAD" ON Logic supply ON, firmware recorder is being deleted, wait until "F" on display, logic supply off, DIP switch "LOAD" OFF Logic supply ON, display "F"→ boot loader active, Ethernet connection to PC/Laptop and load new firmware with WebMotion®.

15.3.2 Defective Firmware

MRL 2006/42/EC notes

- Surfaces may become hot, up to 85°C

Copyright, Disclaimer

This data sheet contains proprietary information protected by copyright. All rights are reserved. This document may not be photocopied, reproduced or translated in whole or in part without the prior agreement of Jenny Science AG.

Jenny Science AG can neither guarantee nor be made responsible for any consequences resulting from incorrect information.

These manual is subject to change without notice.

Jenny Science AG Sandblatte 11 CH-6026 Rain, Switzerland

Tel +41 (0) 41 255 25 25

www.jennyscience.ch info@jennyscience.ch

© Copyright Jenny Science AG 2024